Introduction and strategy for hollow e-lens studies

Stefano Redaelli, CERN, BE-ABP
Outline

☑ Introduction
☑ Motivations
☑ Timeline
☑ CERN strategy
☑ Scope of this meeting
Hollow electron beams provide a possible way to selective (by transverse amplitude) control the particle’s diffusion speed and halo populations. This can enhance the performance of the present collimation system.
Hollow electron beams provide a possible way to selective (by transverse amplitude) control the particle’s diffusion speed and halo populations. This can enhance the performance of the present collimation system.
Hollow electron beams provide a possible way to selective (by transverse amplitude) control the particle’s diffusion speed and halo populations. This can enhance the performance of the present collimation system.
Motivations for LHC and HL-LHC
Motivations for LHC and HL-LHC

- Improve the present LHC collimation:
 - Control the flux of primary protons on the collimators, without affecting the beam core.
 - Mitigate sudden drops of lifetime (we can lose halo particles “when we want”)
 - Reduce sensitivity of loss spikes on orbit jitters
Motivations for LHC and HL-LHC

- **Improve the present LHC collimation:**
 - Control the flux of primary protons on the collimators, without affecting the beam core.
 - Mitigate sudden drops of lifetime (we can lose halo particles “when we want”)
 - Reduce sensitivity of loss spikes on orbit jitters

- **Complement active machine protection techniques for operation with crab-cavities (HL-LHC):**
 - Control of transverse halo population at amplitudes above 3-4 sigmas deemed crucial for the single-turn failures.
Motivations for LHC and HL-LHC

- Improve the present LHC collimation:
 - Control the flux of primary protons on the collimators, without affecting the beam core.
 - Mitigate sudden drops of lifetime (we can lose halo particles “when we want”)
 - Reduce sensitivity of loss spikes on orbit jitters

- Complement active machine protection techniques for operation with crab-cavities (HL-LHC)
 - Control of transverse halo population at amplitudes above 3-4 sigmas deemed crucial for the single-turn failures.

- Other potential usages
 - Changing gun types would allow several types of beam manipulations.
Motivations for LHC and HL-LHC

- Improve the present LHC collimation:
 - Control the flux of primary protons on the collimators, without affecting the beam core.
 - Mitigate sudden drops of lifetime (we can lose halo particles “when we want”)
 - Reduce sensitivity of loss spikes on orbit jitters

- Complement active machine protection techniques for operation with crab-cavities (HL-LHC)
 - Control of transverse halo population at amplitudes above 3-4 sigmas deemed crucial for the single-turn failures.

- Other potential usages
 - Changing gun types would allow several types of beam manipulations.

- Important questions / caveats
 - Do we really need it? → Need to see during post LS1 performance
 - This technique must be addressed in comparison to other techniques that might be deployed on a shorter timescale if needed.
 - Can it work well for the LHC beams (more complex e-beam powering and tighter operational conditions than at the Tevatron)?
(Recent) timeline

- **CERN review in Nov. 2012**

 Brought up technical aspects for installation in LHC or SPS.

- **HiLumi annual meeting in Frascati, end of Nov. 2012**

 Strong message about CERN interest to pursue this option in the future.

- **End of 2012**

 Hollow e-lens item into the US-LARP list of topics (item under observation)!

- **End of Jan. 2013**

 CERN internal executive meeting to propose a strategy base on the technical input of the the review.

- **March 2013**

 Presentation to HLTC and proposal of working plan.

- **April 2013**

 Present CERN strategy to US-LARP CM20 to steer USA contribution.

- **December 2013**

 First complete draft of CDR by FNAL team
(Recent) timeline

- **CERN review in Nov. 2012**

 Brought up technical aspects for installation in LHC or SPS.

- **HiLumi annual meeting in Frascati, end of Nov. 2012**

 Strong message about CERN interest to pursue this option in the future.

- **End of 2012**

 Hollow e-lens item into the US-LARP list of topics (item under observation)!

- **End of Jan. 2013**

 CERN internal executive meeting to propose a strategy base on the technical input of the the review.

- **March 2013**

 Presentation to HLTC and proposal of working plan.

- **April 2013**

 Present CERN strategy.

- **December 2013**

 First complete draft of

Scope of our studies:

- Have a solution for implementation in LS2 (if proved necessary)
- More optimized solutions for the HL-LHC (LS3 implementation)
CERN strategy

Taking into account the present financial situation and the manpower commitment to the LS1 activities, CERN cannot decide now on the installation of the available Tevatron hardware in the SPS or the LHC.

This also takes into account that firm indications of LHC critical performance limitations without scraping, can only become apparent after some operational experience at energies near to 7 TeV.

The CERN management fully supports the studies on hollow e-lens and strongly recommends to focus the presently available resources towards the preparation of a possible production of 2 hollow e-lens for the LHC.

- Design of a device optimized for the LHC at 7 TeV (improve integration into the LHC infrastructure and improve instrumentation).
- Actively participate to beam tests worldwide on this topic. Specifically, CERN endorses the setup of hollow e-beam tests in RHIC.
- Start building competence at CERN on the hollow e-beam hardware.
- Continue working on alternative methods for halo scraping.
- Work with very high priority on improving the halo diagnostic at the LHC.
CERN strategy

Taking into account the present financial situation and the manpower commitment to the LS1 activities, CERN cannot decide now on the installation of the available Tevatron hardware in the SPS or the LHC.

This also takes into account that firm indications of LHC critical performance limitations without scraping, can only become apparent after some operational experience at energies near to 7 TeV.

Rephrasing: Design and engineering specification, possible component test, to be ready for an optimized solution for LS3. In case of emergency, even for LS2. Adaptation of Tevatron TEL2?

- **Design** of a device optimized for the LHC at 7 TeV (improve integration into the LHC infrastructure and improve instrumentation).
- Actively **participate** to beam tests worldwide on this topic. Specifically, CERN endorses the setup of hollow e-beam tests in RHIC.
- Start building **competence at CERN** on the hollow e-beam hardware.
- Continue working on **alternative methods** for halo scraping.
- Work with very high priority on **improving the halo diagnostic** at the LHC.
CERN strategy

Taking into account the present financial situation and the manpower commitment to the LS1 activities, CERN cannot decide now on the installation of the available Tevatron hardware in the SPS or the LHC.

This also takes into account that firm indications of LHC critical performance limitations without scraping, can only become apparent after some operational experience at energies near to 7 TeV.

Rephrasing: Design and engineering specification, possible component test, to be ready for an optimized solution for LS3.
In case of emergency, even for LS2. Adaptation of Tevatron TEL2?

- **Design** of a device optimized for the LHC at 7 TeV (improve integration into the LHC infrastructure and improve instrumentation).
- Actively **participate** to beam tests worldwide on this topic.
 Specifically, CERN endorses the setup of hollow e-beam tests in RHIC.
- **Start building competence at CERN** on the hollow e-beam hardware.
- Continue working on **alternative methods** for halo scraping.
- Work with very high priority on **improving the halo diagnostic** at the LHC.
Scope of this meeting
Scope of this meeting

- Get key people in contact (engineering teams), introduce new players
Scope of this meeting

- Get key people in contact (engineering teams), introduce new players
- Make everybody aware of the recent development on the CDR
Scope of this meeting

☑ Get key people in contact (engineering teams), introduce new players
☑ Make everybody aware of the recent development on the CDR
☑ See the status of the CERN activities on the ELENA electron cooler
 → synergy for a common test stand?
Scope of this meeting

- Get key people in contact (engineering teams), introduce new players
- Make everybody aware of the recent development on the CDR
- See the status of the CERN activities on the ELENA electron cooler → synergy for a common test stand?
- Prepare our visit to USA!
 - Identify key partners / stakeholders
 - Identify a number of questions that can be addressed until the CM22
 - Identify key question that will be addressed during our visit (covering magnets, cryo, vacuum, instrumentation, powering)
Scope of this meeting

- Get key people in contact (engineering teams), introduce new players
- Make everybody aware of the recent development on the CDR
- See the status of the CERN activities on the ELENA electron cooler → synergy for a common test stand?

Prepare our visit to USA!
- Identify key partners / stakeholders
- Identify a number of questions that can be addressed until the CM22
- Identify key question that will be addressed during our visit (covering magnets, cryo, vacuum, instrumentation, powering)

Ultimate goal is to converge in the next weeks to a strategy to steer CERN activities in the next year

Tentative road maps: iteration on locations in IR4 (optimum betas for baseline optics), implications on solenoids (magnet design driven by stability requirements), first iterations on integration and system design/interfaces.
Scope of this meeting

- Get key people in contact (engineering teams), introduce new players
- Make everybody aware of the recent development on the CDR
- See the status of the CERN activities on the ELENA electron cooler
 → synergy for a common test stand?
- Prepare our visit to USA!
 - Identify key partners / stakeholders
 - Identify a number of questions that can be addressed until the CM22
 - Identify key question that will be addressed during our visit
 (covering magnets, cryo, vacuum, instrumentation, powering)
- Ultimate goal is to converge in the next weeks to a strategy to steer
 CERN activities in the next year
 *Tentative road maps: iteration on locations in IR4 (optimum betas for baseline
 optics), implications on solenoids (magnet design driven by stability
 requirements), first iterations on integration and system design/interfaces.*
- Reminder: In parallel, we are working on alternatives (ADT narrow-
 We will also discuss simulations for these cases at the CM22!