Outline

- CRYSTAL-channeling simulation code
 - Introduction
 - Algorithm
 - Specific details
- Single passage simulation
 - Comparison of the results with SixTrack crystal module simulations
 - Observation of interesting effects for the LHC
 - Considering of the miscut angle problem for the LHC
- New effects for the LHC collimation
 - A technique to improve crystal channeling efficiency of charged particles (crystal cut)
 - Multiple volume reflection in one bent crystal (MVROC)
 - Combination of MVROC and channeling
My mission at CERN: CRYSTAL-channeling* simulation code

- To compare CRYSTAL-channeling simulation results with CRYAPR modeling.
- To check the proper consideration of all possible effects by both of these codes, to look for new interesting effects.
- To understand, if some our ideas can be useful for the LHC collimation.

CRYAPR

Statistical treatment of various interactions between protons and crystal, optimized for multi-turn tracking in an accelerator.

CRYSTAL-channeling

Routine for the tracking proton trajectories in crystal by solving equation of motions with interplanar field potential***:

\[p v \frac{d^2 x}{dz^2} + U'(x) + \frac{p v}{R} = 0 \]

*Designed by V. Tikhomirov, A. Sytov.
Creation and evolution of CRYSTAL-channeling

Main conception: Victor Tikhomirov codes.

Spring 2011 – first version on Delphi
Summer 2011 – first attempts of simulation
(UA9 experiment, miscut angle influence)

Summer 2012 (Fermilab summer student internship PARTI) – rewriting the code on Fortran language and its considerable modification, combining of it with STRUCT*, first attempts of simulation of experiment at the Recycler Ring**
Autumn 2012 – winter 2013 – Simulation of experiment at the Recycler Ring**, comparison of the results with Yazynin code***
Spring 2013 – MPI modification for parallel simulations

Initial coordinates and angles, energy $x_0, \theta_{x0}, y_0, \theta_{y0}, E_0$

- Was a multiple coulomb scattering?

Yes

Recalculation of coordinates and angles in crystal reference system, considering the miscut

A trajectory calculation $x_{i+1} = x_{i+1}(x_i, \theta_{xi}), \theta_{xi+1} = \theta_{xi+1}(x_i, \theta_{xi})$

- $\dfrac{d^2x}{dz^2} + U'(x) + \dfrac{p}{R} = 0$

No

- Does particle hit either the face or lateral surface of the crystal?

Yes

Calculation of ionization losses from average value of electron density, along the trajectory

No

- Was an escape from the crystal through either its lateral or back surface?

Yes

- Was an elastic nuclear scattering?

No

- Simulation of $d\theta_x, d\theta_y$, Gaussian profile

- Was a single coulomb scattering on nuclei (Rutherford cross-section)?

Yes

- Simulation of $d\theta_x, d\theta_y$, Rutherford formula

No

- Was an inelastic nuclear scattering?

Yes

- Final coordinates and angles, energy $x_f, \theta_{xf}, y_f, \theta_{yf}, E_f$

No

- Was a multiple coulomb scattering?

No

- Was an enter into another channel?

Yes

- $x = x - d \times \text{Sign}(x)$

No

- Simulation of $d\theta_x, d\theta_y$, Gaussian profile

Yes

- Was a diffractive scattering?

No

- Simulation of $d\theta_x, d\theta_y$, Gaussian profile

Yes

- Particle is lost
Specific features

Spline interpolation of:
- Interplanar potential
- Interplanar electric field
- Density of nuclei
- Density of electrons

\[\Delta x_i = x_i - x; \]
\[S(x) = a_i + \Delta x_i (b_i + \Delta x_i (c_i + d_i \Delta x_i)) \]

Advantages:
- At least 10 mathematical operations necessary for function calculation
- Reading spline coefficients from input file makes an algorithm universal for any potential type
- 1000 interpolation nodes is more than enough for accuracy of $10^{-7} - 10^{-8}$.

Step changing:

Channeling step:

\[d z_0 = \lambda / N_{steps} = \pi d_{pl} \sqrt{\frac{p v}{2 U_0}} / N_{steps} \]

Amorphous step:

\[d z = \frac{5 \theta_L}{\pi \sqrt{2}} \]

Starting from:

\[\theta_x = \frac{5}{\pi \sqrt{2}} \theta_L \]
Simulations input

- **Crystal parameters:** crystal length $l_{cr}=3, 4, 5$ mm; bending angle $\theta_b=40, 50, 60$ μrad; $\theta_c=0, -25, -35, -100, 100$ μrad for $l_{cr}=3$ mm, $\theta_b=40$ μrad; $l_{cr}=4$ mm, $\theta_b=50$ μrad and $\theta_c=0$ μrad for remaining combinations of length and bending angle.

- Ideal crystal without amorphous layer, miscut, crystal torsion, imperfections, …

- Input beam distribution at the crystal entrance was calculated for the LHC case with SixTrack* for 7 TeV energy.

- Only output distribution from crystal was considered (single passage effects).

A similar setup was used for comparison between the SixTrack module and Taratin's code.

F. Schmidt, CERN/SL/94-56-AP.

High dechanneling probability is achieved at maxima of channeling oscillations, low dechanneling probability at minima of them. At 7 TeV very few number of oscillations: 4 per mm + low angular divergence of the incident beam => high correlation between phase of different particles => “dechanneling peaks”.

About 1.3 % of particles dechannel at the first mm of crystal (4 oscillations). It may be important for collimation.
Dechanneling peaks and initial angular distribution*

Peculiarities of the LHC case:

- Very high energy ⇒ very few oscillations in crystal ⇒ good correlation between trajectories
- Rather large impact parameter ⇒ initial angular distribution is asymmetric and shifted from ideal angle value for left crystal point.
- Bending radius is rather small⇒ interplanar potential is considerably asymmetrical.

Optimal orientation for left point of the crystal is

$$\theta_{\text{tilt}} = -\alpha \ast \sqrt{\epsilon / \beta}$$

Asymmetry of both plane potential in bent crystal and initial angular distribution is the reason of less height of a half of “dechanneling peaks”. Ideal alignment of the crystal is important for collimation.

*Calculated with SixTrack, D. Mirarchi, S. Redaelli, W. Scandale, V. Previtali, Layouts for crystal collimation tests at the LHC, IPAC2013.
Volume capture:
CRYAPR: \(0.05\%\).
CRYSTAL-channeling: \(0.3\% + \sim 0.3\%\) (dechanneled) \(\approx 0.6\%\).

By Biryukov approximation formula*:
\[
\eta_{VC} = \frac{\pi R \theta_c}{2 L_{De}}
\]

\(R=75\text{m},\ L_{De}\approx 3\text{m},\ \theta_c=2.1\mu\text{rad}\ (\text{bent})\Rightarrow\eta_{VC}=0.008\%\).

But for 7 TeV \(L_{Dn}\sim l_{cr}\) and \(L_{De}\gg l_{cr}\).

So, the main mechanism for both the volume capture and dechanneling at 7 TeV is scattering by nuclei but not by electrons. So, \(L_{Dn}\sim 2.6\text{cm}\) and:
\[
\eta_{VC} = \frac{\pi R \theta_c}{2 L_{Dn}} \approx 0.9\%.
\]

About 0.7% of particles are scattered by single coulomb scattering. It may be important for collimation.

About 0.3% of particles will be scattered by either elastic or diffractive nuclear scattering. A correct model for such events can be also essential.
Ionization losses, channeling orientation

Ionization energy losses vs horizontal kick

CRYAPR Dechanneling + amorphous
Nuclear + diffractive scattering

Ionization energy losses vs passed distance

Amorphous
Dechanneling
Channeling with high amplitude
Increasing of losses up to 15% w.r.t. amorphous orientation; 10% of particles

Exit through crystal lateral surface + VR

Ionization energy losses per cm vs transverse coordinate

Crystal plane
Losses in amorphous direction
Ionization losses, amorphous orientation: 100μrad

About 7% of particles will escape the crystal through its lateral surface at amorphous orientation. It may be important for collimation.

Ionization losses for LHC proton beam are not important, but for heavy ion beam they are important: dEloss~20-50GeV/cm for 574TeV ions.
Ionization losses, amorphous orientation: -100μrad

Entrance through crystal lateral surface

Coulomb scattering

Nuclear + diffractive scattering

VR of strongly scattered particles

Coulomb scattering

Nuclear or diffractive scattering

Reflection of strongly scattered particle

Horizontal kick distribution

Single coulomb scattering

Multiple coulomb scattering

VR of strongly scattered particles

Nuclear + diffractive scattering

$1/N \frac{dN}{d\theta X_{\text{defl}}} \murad^{-1}$
Diffractive losses, channeling orientation

Difference is explained simply by different statistics caused by different models of elastic nuclear scattering.

About 0.3% of particles will be scattered by either elastic or diffractive nuclear scattering. Energy deposition is enough for considerable changing the trajectory in accelerator. A correct model for such events is important.
For about 10 millions of particles the average time of calculation of SixTrack at lxplus was 5 h.

The calculation time by CRYSTAL-channeling strongly depends on crystal orientation.
Calculation was performed by i7 processor, 4 cores, 2.3 GHz.

For estimation it was put that calculation at lxplus is 3 times faster.
THE MISCUT ANGLE INFLUENCE ON THE FUTURE LHC CRYSTAL BASED COLLIMATION SYSTEM

V.V. Tikhomirov and A.I. Sytov*

Research Institute for Nuclear Problems, Belarus State University, 220030, Minsk, Belarus
(Received October 25, 2011)

Miscut angle influence for the LHC

LHC miscut influence zone:
- 1.4% of particles for $\theta_{ms}=40\mu$rad
- 0.78% of particles for $\theta_{ms}=30\mu$rad
- 0.35% of particles for $\theta_{ms}=20\mu$rad
- 0.086% of particles for $\theta_{ms}=10\mu$rad

Depending on its value, miscut angle may be important for collimation.
Overview of important effects for collimation

- **Channeling** profile: may be important only for a large negative miscut.
- **Volume reflection** profile is important for any crystal orientation.
- **Single coulomb scattering** at large angle (more than 1μrad) occurs with 0.25% and 0.7% of particles for channeling and amorphous orientation correspondingly. So, it may be important for any crystal orientation.
- **Fast dechanneling** occurs with about 1.3% of particles for channeling orientation. So, it may be also important.
- **Nuclear elastic, diffractive and inelastic scattering and diffractive energy losses** are essential for crystal collimation. So, the correct model for such effects is very important.
- **Ionization energy loss** map reflects almost all effects occurring in crystal. It may be important for heavy ions.
- **Escape of particles through the lateral surface of the crystal** involves about 0.25%, 2% and 7% for channeling, VR and amorphous orientation correspondingly. It is very important for collimation.
- **Miscut angle** can be important for the same reason as the previous effect for values $\theta_{ms} > 10$-20μrad.
New effects for the collimation at the LHC
A technique to improve crystal channeling efficiency of charged particles

V.V. Tikhomirov

Research Institute for Nuclear Problems, Belarus State University,
Bobruiskaya 11, 220030 Minsk, Belarus
E-mail: vvtikh@mail.ru

Proton "phase space" a) at $z = 0$, b) at $z = z_1$, c) at $z = z_2$ and e) at $z = z_2 + \pi \nu_\parallel /2\omega$ in the cut presence and d) at $z = z_1 + \pi \nu_\parallel /\omega$ in the absence of the latter
A technique to improve crystal channeling efficiency of charged particles

V.V. Tikhomirov

Research Institute for Nuclear Problems, Belarus State University,
Bobruiskaya 11, 220030 Minsk, Belarus
E-mail: vvtikh@mail.ru

Dependence of the 7TeV proton dechanneling probability in a 1 cm bent Si crystal on the r.m.s. incidence angle

Angular divergence of the beam is small enough for application of this technique.
A technique to improve crystal channeling efficiency for the LHC!

Channeling efficiency increases by **13.5%**! Nuclear interactions decrease in **2 times**!

Cut parameters: $z_1=17\mu m$; cut thickness $z_2-z_1=54\mu m$ for the LHC energy. Quite real!
Increase in probability of ion capture into the planar channelling regime by a buried oxide layer

V Guidi1,2, A Mazzolari1 and V V Tikhomirov2

1 Department of Physics and INFN - University of Ferrara, Via Saragat 1/C, I-44100 Ferrara, Italy
2 Research Institute for Nuclear Problems, Belarus State University, Bobruiskaya 11, 220030 Minsk, Belarus

E-mail: guidi@fe.infn.it, mazzolari@fe.infn.it and vvtikh@mail.ru

Received 31 March 2009, in final form 24 June 2009
Published 23 July 2009
Online at stacks.iop.org/JPhysD/42/165301

Cut parameters: the crystal layer before 17μm; cut thickness 54μm for the LHC energy. Quite real! Much simpler to make an amorphous layer instead of the cut.
Multiple Volume Reflection in one bent crystal (MVROC)*

Axes form *many* inclined reflecting planes

Evolution of particle transverse velocity in the ry plane**

Collimation of the Circulating Beam in the U-70 Synchrotron
by Means of the Reflection of Particles in Crystals
with Axial Orientation

A. G. Afonin, V. T. Baranov, M. K. Bulgakov, I. S. Voinov, V. N. Gorlov, I. V. Ivanova,
D. M. Krylov, A. N. Lun’kov, V. A. Maisheev, S. F. Reshetnikov, D. A. Savin,
E. A. Syshchikov, V. I. Terekhov, Yu. A. Chesnokov, P. N. Chirkov, I. A. Yazynin
Institute for High Energy Physics, Protvino, Moscow region, 142281 Russia
Received January 18, 2011

Observation of multiple volume reflection by different planes
in one bent silicon crystal for high-energy negative particles

W. Scandale, A. Vomiero, E. Bagli, S. Baricordi, P. Dalpiaz, M. Fiorini, V. Guidi,
A. Mazzolari, D. Vincenzi, R. Milan, G. Della Mea, E. Vallasz, A. G. Afonin,
Yu. A. Chesnokov, V. A. Maisheev, I. A. Yazynin, A. D. Kovalenko, A. M. Taratin,
A. S. Denisov, Yu. A. Gavrikov, Yu. M. Ivanov, L. P. Lapina, G. Malyarenko,
V. V. Skorobogatov, V. M. Suvorov, S. A. Vavilov, D. Bolognini,
S. Hasan, A. Mattera, M. Prest, V. V. Tikhomirov

First observation of multiple volume reflection by different planes
in one bent silicon crystal for high-energy protons

W. Scandale, A. Vomiero, E. Bagli, S. Baricordi, P. Dalpiaz, M. Fiorini, V. Guidi,
A. Mazzolari, D. Vincenzi, R. Milan, Gianantonio Della Mea, E. Vallasz,
A. G. Afonin, Yu. A. Chesnokov, V. A. Maisheev, I. A. Yazynin,
V. M. Golovatyuk, A. D. Kovalenko, A. M. Taratin, A. S. Denisov,
Yu. A. Gavrikov, Yu. M. Ivanov, L. P. Lapina, G. Malyarenko,
V. V. Skorobogatov, V. M. Suvorov, S. A. Vavilov,
D. Bolognini, S. Hasan, A. Mattera, M. Prest, V. V. Tikhomirov.
Applications of MVROC

MVROC for the UA9 experiment

First MVROC observation
W. Scandale et al, PLB 682(2009)274

MVROC indeed increases reflection angle 5 times
Distributions of the impact parameter and number of the crystal transversals in usual Si crystal and crystal in MVR orientation

MVR both increases the impact parameter and decreases the crystal transversals number at rough alignment.
Angular distributions of 7 TeV protons behind 5 mm W <111> (left peak) and Si <111> (right peak) crystals for MVROC deflection. \(\delta \Theta_{x,y} = 4 \, \mu \text{rad} \) in both cases.

The MVROC in tungsten crystal could deflect a majority of halo particles onto secondary collimators at the first passage through the primary crystalline collimator.

Systematic comparison of CRYSTAL-channeling with different crystal routine was performed.

I found some difference related to the physics treatment of the particles dynamics in the crystal:

- dechanneling peaks well correlated with channeling oscillations;
- channeling/VR profile;
- volume capture;
- single coulomb and nuclear elastic scattering;
- correlation between horizontal kick and ionization losses;
- simulation of escape through the crystal lateral surface.

Crystal cut can considerably increase the channeling efficiency and decrease inelastic losses in crystal. Additionally it can be the first experimental test of this effect.

MVROC in Tungsten crystal and combined action of MVROC and channeling are also nice effects for experimental test at the LHC.
Thank you for attention!