HL LHC collimator scenarios: some impedance considerations

N. Mounet, E. Métral, B. Salvant
S. Redaelli & collimation team
HL-LHC collimator scenarios: impedance considerations

➢ Introduction: some facts about the collimators impedance at 4 TeV in 2012

➢ HL-LHC preliminary impedance calculations for several collimator scenarios

➢ Conclusion and work to be done
Introduction: contribution of various collimator families to total "2012 - 4TeV" impedance (1/2)

- Real part of the impedance: relative contribution of collimator families to total impedance model (vertical dipolar, 4 TeV, 2012 settings):

⇒ TCSG and TCP are largely dominant.

Note: this is similar in horizontal.
Introduction: contribution of various collimator families to total ”2012 - 4TeV” impedance (2/2)

- Imag. part of the impedance: relative contribution of collimator families to total impedance model (vertical dipolar, 4 TeV, 2012 settings):

⇒ TCSG and TCP are largely dominant.

Note: this is similar in horizontal.
Evaluation of the LHC impedance model w.r.t beam-based measurements

- Tune shifts measurements when moving collimator families at 4TeV ($Q' \sim 0-2$)
 → compare tune slope w.r.t. intensity between simulations & measurements
 (thanks to R. Bruce, E. Quaranta, B. Salvachua, G. Valentino et al):

 → Discrepancy factor around 2
 (under investigation)
HL-LHC impedance calculations

- Impedance model = cold beam screen (~86% of the LHC circumference)
 + warm vacuum pipe (~ the rest)
 + broad band model (taperings, etc.)
 + collimators in two "extreme" scenarios:
 - nominal settings (6σ TCP, 7σ TCS IR7), same materials as now (carbon-reinforced carbon or CFC – ρ_{CFC} = 5 μΩ.m)
 - relaxed settings (6σ TCP, 8.3σ TCS IR7), TCS in IR7 in molybdenum-coated graphite (ρ_{graphite} = 15 μΩ.m, ρ_{Mo} = 5.35 μΩ.cm – cf. A. Bertarelli et al).
Comparison between two extreme cases

- Ratio between "relaxed-metallic" and "nominal-CFC" scenarios (horizontal and vertical dipolar terms, flat top):

⇒ Only real part of imp. at very low frequency is higher with the "relaxed-metallic" option.

At intermediate frequencies, factor 2 gain in imp.
Effect of the settings alone

- Ratio between "relaxed-CFC" and "nominal-CFC" scenarios (horizontal and vertical dipolar terms, flat top):

\[\Rightarrow \text{At intermediate frequencies, gain of only } \sim 20\% \text{ in impedance.} \]
Effect of the molybdenum coating thickness

⇒ 50 µm of molybdenum are probably enough.
⇒ Need to check effect on beam stability to get an optimal (possibly lower) coating thickness.
Comparison between most favourable scenario and 2012 situation

- Comparing the impedances of the "relaxed-metallic" scenario to the 2012 situation:

\[\Rightarrow \text{At intermediate frequencies, we gain} \approx 20\% \text{ w.r.t. 2012.} \]
Preliminary conclusions and perspectives

- Beam stability with these collimator scenarios still to be studied, but most probably metallic secondary collimators in a relaxed configuration is what we would aim too (much better for the transverse impedance at intermediate frequencies).

- Future work:
 - Other possible settings scenarios.
 - Beam stability and heating studies.
 - Realistic geometric impedance evaluation of all present and future collimators (collaboration with M. Zobov, A. Mostacci et al at INFN).
Comparing the impedances of the "relaxed-metallic" scenario to the "relaxed-CFC" scenario:

⇒ At intermediate frequencies, we gain ~40% with molybdenum.