Update on the loss maps simulations of the ATS optics

R. de Maria, A. Marsili, S. Redaelli
Update: differences with first presentation

- Dispersion is now corrected.

- The issue with the first impact distribution is solved:
 - They were many first impacts on other collimators than the considered primary;
 - Now less impacts, and sorted by collimator.

- All simulations are now without energy spread.
Dispersion

Dispersion not corrected

Dispersion corrected
Hor. halo, first impacts on considered primary

- With energy spread:
 - Dispersion not corrected: 97.31 % on TCP
 - Dispersion corrected: 99.47 % on TCP

- Without energy spread:
 - Dispersion not corrected: 99.07 % on TCP
 - Dispersion corrected: 99.30 % on TCP

- Out of the particles not lost on the considered primary, 92 % are lost on the next TCP (skew).
First impacts on primary: hor., with energy spread

- Dispersion not corrected
- Non realistic impact parameters
- First impacts on other coll.

- Dispersion corrected
- All impacts within 1.2σ
- Much less impacts on other collimators.
Crossing angles

- IP1 (V): 295 μrad
- IP2 (V): 240 μrad
- IP5 (H): 295 μrad
- IP8 (H): 305 μrad
Vertical halo, 6σ, $dp/p = 0$

loss map for the whole ring

- Global loss map with standard simulation parameters worked at first attempt
 - MadX, Sixtrack, Collimation, trajectory
- New loss map is now more realistic
- Many losses outside collimators
- Leakage around other IPs

A. Marsili, BE-ABP-LCU, CERN

Vertical halo, 6σ, $dp/p = 0$

loss maps for IR1 and IR5

- Cells 4L1 to 2L1
- Downstream of TCTVA.4L1.B1
- Cells 3L5 and 2L5
Conclusion

- All results seem realistic
 - Losses distributed around the ring
 - Realistic (smaller) impact parameter on primary
 - Less first impacts on other collimators
- Full multi-turn cleaning simulation chain well under control
- We can start trusting loss maps, and produce some more.