ColUSM #31 Friday, 1st November 2013

High Luminosity LHC

Collimator failure losses for various HL-LHC configurations

L. Lari IFIC (CSIC-UV) & CERN R. Bruce, S. Redaelli

Thanks to C. Bracco and B. Goddard

The HiLumi LHC Design Study (a sub-system of HL-LHC) is co-funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.

Outline

- Asynchronous dump: what is this?
- Tools used in the simulations
- Validation of the simulation set-up
- Risks by using the HiLumi optics with nominal and 2 σ retraction collimation setting:
 - Beam1
 - Beam2 + including optics errors
- Conclusions

uminosity

Asynchronous dump: what is it?

High Luminosity LHC synchronously with the abort gap.

Tools used in the simulations

[See also: L.Lari et al. *Asynchronous beam dump treatment*, Sixtrack for collimation: new available features meeting, 7th June 2013, CERN]

Validation of the simulation set-up

June 2012

4TeV nom. Optics + out 1.5 mm @IP6 + 1 mm out 3 TCSG +1 TCLA @IP7 +1σ in the most exposed TCT @IP1

November 2012

4TeV nom. Optics + out 1.5 mm @IP6 $+1\sigma$ in the most exposed TCT @IP1

[REF: L.Lari et al. Simulations and Measurements of Beam Losses on LHC Collimators during Beam Abort Failures, IPAC13, Shanghai, China]

[REF: L.Lari et al. Studies of Thermal Loads on Collimators for HL-LHC Optics in case of Fast Losses, IPAC13, Shanghai, China]

Phase advance

Calculated form the MKD.406 (the furthest away form TCDQs)

	7TeV nominal	ATS (i.e. SLHC_3.1b)	HLLHCV1
Beam1			
TCTH.4L1.B1	55.8	97.2 📇	208.8
TCTH.4L2.B1	257.3	182.8	265.7
TCTH.4L5.B1	47.3	145.6	244.6
TCTH.4L8.B1	335.7	166.5	213.1
Beam2			
TCTH.4R1.B2	198.1	303.2	139.6
TCTH.4R2.B2	170.4	184.7	230.9
TCTH.4R5.B2	175.8	220.4	103.5
TCTH.4R8.B2	18.7	225.2	215.2

[See also R.Bruce et al. *Collimation requirements for the IR1/5 layout and on-going WP5 studies*, 8th HL-LHC Extended Steering Committee meeting, 13/08/2013, CERN]

Collimation system aperture

For **Beam1** and **Beam2**

Updated ATS optics for Hi-Lumi (i.e. HLLHCV1 optics)

Nom. setting 2_o retraction

Asynchronous dump accident scenarios studied:

- 1. Perfect machine;
- 2. + Retraction of 1.2 mm @IP6;
- + Retraction of 1mm of the of 11 most critical coll. (TCSGs) @ IP7 + TCTHs
 @IP1 and @IP5 in of 1 σ more;
- Optics error (for the most critical Beam2) for 1. and 3. scenarios;
- TCDQs misalignment (precision in alignment = 100urad → max offset of ~0.946 mm (2 preliminary cases studied);

TCP.IP7	6	5.7
TCSG.IP7	7	7.7
TCLA.IP7	10	10.7
2*80cm W DS @IP7	10	10.7
TCP.IP3	15	15
TCSG.IP3	18	18
TCLA.IP3	20	20
TCT.IP1/IP5	8.3	10.5
TCT.IP2/IP8	30	30
TCL.IP1/IP5 (2 Cu +1 W)	15	15
TCLI/TDI.IP2	Tot opened	Tot opened
TCDQ.IP6	8	9
TCSG.IP6	7.5	8.5

1. Perfect machine

1. Perfect machine

2σ retraction

LHC Collimation

2. + Retraction of 1.2 mm @IP6

2σ retraction

2. + Retraction of 1.2 mm @IP6

High Luminosity

3. + Retraction of 1mm @IP7 Beam1 + TCTHs @IP1 and @IP5 in of 1 σ .

LHC Collimatio

3. + Retraction of 1mm @IP7 Beam1 + TCTHs @IP1 and @IP5 in of 1 σ .

2σ retraction

TCLAs and DS coll.

Zoom in IP7

LHC Collimatio

Nom. setting

1. Perfect machine

2σ retraction

Nom. setting

+ Retraction of 1.2 mm @IP6

Conclusions

- As shown, the TCTH@IP5 is the most exposed location for both beams – in particular B2 - for the HLLHCV1 optics.
- 2 σ retraction collimation settings is found as better than the nominal one in terms of protection from an asynchronous dump accident, including setting and error scenarios.
- On going studies on optics errors and TCDQs misalignment will give us more complete picture of the failure scenarios.

3rd Joint HiLumi LHC-LARP Annual Meeting

11-15 November 2013 Daresbury Laboratory

cern.ch