BDSIM Beam Delivery Simulator

L.Nevay, S.Boogert, D.Brewer, S.Gibson, R.Kwee-Hinzmann, J.Snuverink

28th June 2013

BDSIM

- Simulation of particle transport in accelerator beam lines
- Use mad style syntax to define beam line
- Library of generic component geometries
- Use Geant4 for particle matter interactions
- Interface for ROOT analysis
- Visualisation
- Simulate beam losses
- Simulate propagation of secondaries etc.

I. Agapov, G. A. Blair, and J. Carter, The BDSIM Toolkit (2006), pp. 1–34. EUROTeV-Report-2006-014-1

Features

- Parser for easy construction of beam lines
- Classes for typical accelerator components
- Physics processes for fast tracking
- On-the-fly geometry construction
- GMDL & SQL detector database
 Geometry Drivers
- Physics updates through Geant4

Mokka

GDML

GMAD parser

BDSIM – Basic Example

mybeamline.gmad

- q1: quadrupole, l=0.1, k1=3.87; dr1: drift, l=0.5; dr2: drift, l=0.5; all: line =(dr1,q1,dr2);
- beam, particle="e-", energy=1.3 * GeV, distrType="Gauss", sigmaX=0.002*mm, sigmaY=0.002*mm, sigmaXp=0.01*0.005, sigmaYp=0.01*0.004;

use, period=all;

Royal Holloway Iniversity of London

Results Using BDSIM

- Tracking studies of CLIC collimation system^[1]
- Simulation of CLIC beam delivery system^[2]
- Halo estimates for linear colliders^[3]
- Simulation of the ILC^[4]
- Muon background reduction in CLIC^[5]
- Studies of ATF & ATF2 laserwire
- Laserwire for ILC / CLIC beam delivery system^[6]
 - I.Agapov, PRSTAB 12, 081001 (2009)
 G.A.Blair, CERN-OPEN-2002-057
 H.Burkhardt, PAC07 WEOCC03
 J.Carter, Pramana 69, 6, 1133-1136 (2007)
 L.Deacon, arXiv:1202.6628v1
 L.Deacon, EPAC08 TUPC005

Previous Results

CLIC beam delivery system

Wakefields generated using an interface to PLACET

I. Agapov et.al PR-STAB 12, 081001 (2009).

Application to the LHC

- Track particles in ring for multi-turn distribution
- Generation and propagation of secondaries
- Fairly generic geometry
- Generate loss maps
- Generate background distributions for detectors

Similarly for Hi Lumi LHC

- Collimator studies
- Beam loss maps
- Beam background in detectors

LHC Lattice

- Successfully constructed using generic components
- ~100um mismatch between start and finish

Visualisations

Example Phase Space

Tracking in the LHC

Tracking in the LHC 2

Roadmap

- Aim to reproduce current studies for comparison
- Studies in parallel
- Two areas to compare:
 - tracking SixTrack
 - energy deposition FLUKA

Code Roadmap

- Optics symplectic integration schemes
- Geometry
 - LHC specific import FLUKA geometry?
 - aperture / beam pipe factory
- Collimators
 - interface to collimator db / settings
- Develop interfaces:
 - BDSIM tracking -> FLUKA
 - SixTrack tracking -> BDSIM
- Many internal updates required and underway
 - closed ring geometry vs linear
 - geometry imports

Thank you

