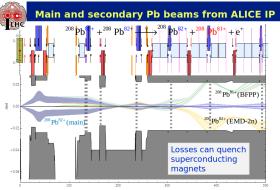
Tagging of Pb-ions in ALICE

Rainer Schicker

Phys. Inst., Heidelberg


Jan 25, 2013

Secondary lead beams at IP2

Trigger on electromagnetic processes

Two detector concepts for the dispersion collimators

Secondary Pb-beams at IP2

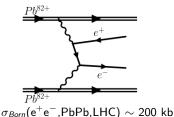
Large EM cross séctions. Similar in ATLAS, CMS J.M. Jowett, ALICE Forum, 20/7/2011

Upgrade of Pb-beam intensity requires DS (Dispersion Suppression) collimators in cold section of LHC dipole magnets, 380 m from IP2

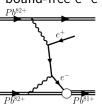
Possibility of active collimators?

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Tagging of secondary Pb-ions

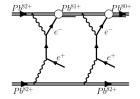

particle transport according to magnetic rigidity $B\rho=\frac{Z}{A}\frac{p}{q}$ for secondary Pb-beams $\frac{Z}{A}\neq\frac{82}{208}$

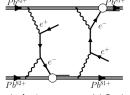
- $Z = \frac{82}{207}, \frac{82}{206}$: GDR 1n, 2n decay
- $\frac{Z}{A} = \frac{81}{208}, \frac{80}{208}$: single and double bound-free pair production
 - bound-free pair production is an electromagnetic process
 - possibility of trigger on purely electromagnetic processes
 - the physics of strong electromagnetic fields
- search for hybrids Pb_{207}^{80+} (2 b.-free, 1 n), Pb_{206}^{81+} (1 b.-free, 2 n)
- $\frac{Z}{A} \neq \frac{82}{208}$: activity in central barrel,ZDC: fragmentation studies
 - additional information for study of very peripheral reactions
 - correlation studies of forward fragments with particle multiplicity at midrapidity

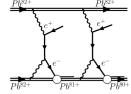

measure position (magn. rigidity) and a signal \propto Z time-of-flight for pile-up rejection and vertex constraint

Single and multiple pair production

single pair production: free e⁺e⁻




bound-free e⁺e⁻

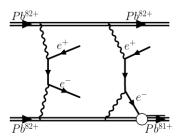


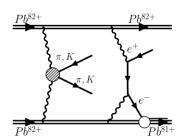
 $\sigma_{\textit{BFPP}}(\text{PbPb,LHC}) \sim 270 \text{ b per beam}$

double bound-free pair production

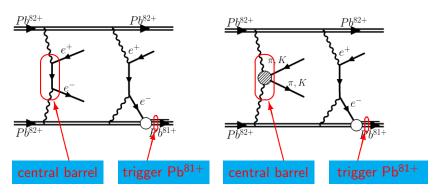
 $\sigma_{2xBFPP}(PbPb,LHC) > 6 \text{ mb (priv. comm. V.Serbo)}$

⟨□⟩⟨□⟩⟨≡⟩⟨≡⟩⟨≡⟩ □ √0,00


Rainer Schicker (Phys. Inst., Heidelberg)


Tagging of Pb-ions in ALICE

Jan 25, 2013


Multiple pair production

production of bound-free pair with a free pair

Trigger on electromagnetic processes

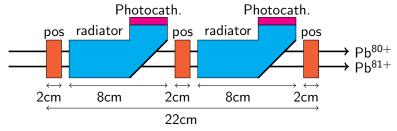
Forward trigger on Pb⁸¹⁺, measure in central barrel

- free e⁺e⁻-pairs
- \blacksquare π^+ - π^- and K^+ - K^- -pairs
- pure electromagnetic processes

⟨□⟩⟨□⟩⟨≡⟩⟨≡⟩⟨≡⟩ □ √0,00

Physics topics in tagging secondary lead beams

- Fragmentation studies, study of very peripheral reactions
- Giant dipole neutron decays, bound-free pair production, hybrids
- The physics of strong electromagnetic fields
 - ▶ QED in a strong coupling regime: $Z\alpha \sim 0.6$
 - Coulomb and unitarity corrections to Born level diagrams of double bound-free pairs
 - Multiple lepton pair production
 - Pion/Kaon pair photoproduction
 - $\gamma\gamma \to {
 m low}$ mass resonances
 - ▶ Total $\gamma\gamma$ -hadronic cross section
 - Chiral magnetic effect in pure electromagnetic interactions ?
 - reaction plane not known, particle dipole pattern at midrapidity?
 - comparison to very peripheral hadronic reactions


Concept of a detector at dispersion collimator location

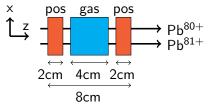
concept of a detector, NOT a technical drawing!

pos: 2-d position and time of flight

radiator: Cerenkov radiator

Photocath: readout Cerenkov photons, 2-dim

clearance 1 cm at front and end, 0.5 cm between elements


total length \sim 20-25 cm

Concept of a gas detector at dispersion collimator location

concept of a detector, NOT a technical drawing !

pos: 2-d position and time of flight

gas detector volume, segmented readout in z and x

clearance 1 cm at front and end 0.5 cm between elements

total length z-dir. \sim 8-12 cm

81⁺ 80⁺ readout gas

x-direction dispersive y-direction vertical z-direction beam