

Measurements of TCL losses 04/07/2012

R. Bruce, A. Marsili, S. Redaelli, B. Salvachua, G. Valentino for the Collimation Team.

Outline

- Introduction & motivation
- Principle
 - List of scans
 - Jaw movements
 - Losses & luminosity
- Results
 - Loss maps
 - Ratios in/out
 - Correlation losses vs. jaw position
- Conclusion & follow-up

Introduction & motivation

- Goal:
 - Assess the effect of the TCLs during collision
 - Benchmark of simulation tools
 - What to do after LS1?
 - Check losses in DS & which magnets are protected
- TCLs:
 - Absorbers for physics debris (1 m, Cu)
 - Set to 10 σ since the beginning of 2012
 - In cell #5 on both sides of IP1 and IP5
- 2^{nd} series of scans (1st: 15/05/2012, *cf. CWG #141*)
- Beam conditions: nominal physics fill #2806
 - Intensity: B1 = 1.8e14 p, B2 = 1.55e14 p
 - Luminosity at the beginning of study: 5e33 cm².s⁻¹

Principle: list of scans

- 1) Symmetric scans for all 4 TCLs
 - The jaws are moved symmetrically: out, then back in
- Regular steps of 0.5 σ , up to 60 σ
- 2) Faster scan for TCL.5L1.B2 and TCL.5R5.B1
 - Jaws are moved symmetrically
 - Bigger manual steps: 2 σ , up to 70 σ
- 3) Asymmetric scan for TCL.5L1.B2 and TCL.5R5.B1:
 - Moving only 1 jaw in then out; then same for other jaw
 - Manual 2 σ steps, up to 70 σ
- 4) Asymmetric scan for TCL.5R1.B2 and TCL.5L5.B1
 - Manual 2 σ steps, up to 70 σ

Jaw positions vs. time

Effect of TCL scans & data processing

- TCL protects elements up to 200 m downstream
- Effect of TCL moving in:
 - Losses at the TCL increase
 - Losses downstream decrease
- Losses have to be divided by luminosity
 - Exact matching! (second by second)
 - Technical issue with the available timestamps
- Loss profiles with TCL in or out
- Ratio of the normalised losses
- Normalised losses vs. jaw position

Principle: collimator gap

Jaws move symmetrically, $\sigma = 0.35$ mm

Losses at the TCL

Normalised losses at the TCL

CERN

Results

Results: in/out ratios of normalised BLM signal

Normalised losses at TCL vs. jaw position

• One BLM first decreases, but starts increasing again at the end of the scan : first cross-talk from another shower (TCL), then "real" losses?

shower)

• Another BLM decreases with TCL opening

(first BLM downstream the TCL – sees the

Evolution of loss profile 5L5

- Losses start to appear first the furthest away from the TCL, then get closer.
- We can observe a shower from the TCL.
- Cell #9 might not be protected enough.
- We can measure the effect of the TCL: up to factor 100 in cleaning.

Conclusion & Follow-up

- Compare these results with the ones for the asymmetric scan
- Understand the evolution of the losses
 - Study of the values of slope, plateau, setting at which each plateau starts
 - Dependence on the phase advance?
- Simulate these losses in SixTrack using debris distributions

