

Status of non-linear collimation system

L. Lari

Instituto de Fisica Corpuscolar (IFIC-CSIC) & CERN

J. Resta Lopez

Instituto de Fisica Corpuscolar (IFIC-CSIC)

ColUS – 13th July 2012

ColUS - July 13th, 2012

L. Lari & J. Resta Lopez

Outline

- Introduction to the non-linear betatron cleaning collimation system
- Optics studies (JRL)
- Preliminary Dynamic Aperture studies MD (JRL)
- Cleaning efficiency studies (LL)
- Energy deposition studies (LL)
- Conclusions & Proposal for future work

Introduction (1)

- It is based on the use on non-linear magnets, such as sextupoles and octupoles;
- The purpose of the first non-linear element is to blow up beam size and particle amplitude, in order to place the collimator jaw further away from the beam and, as consequence:
 - to reduce the resistive collimator-induced impedance.
 - to reduce the transverse beam density to decrease risks of collimator damages.
 - to reduce the number of collimators.

Introduction (2)

- As following previous studies, the proposed layout for LHC includes the installation of 2 strong sextupoles, symmetrically located from the center of the IP7, in the Straight Section.
- Synergy with linear colliders studies: in the case of multi-TeV linear colliders (e.g. CLIC) nonlinear E collimation schemes are being investigated for protection of the Beam Delivery System (BDS)

4

Optic studies

IR7 layout:

ColUS - July 13th, 2012

- Based on a skew sextupole pair
- -I between skew sextupoles to cancel geometric aberrations
- Matching section IR7, without affecting the other sections (optics V6.503 'as-built')

Sextupole parameters

variable	value
beta functions (x, y) at skew sext.	200.0, 200.0 m
product of skew sextupole pole-tip	
field and length $(B_T l_s)$	8.1823 T·m
skew sextupole aperture a_s	10 mm
skew sextupole strength K_s	7.0063 m^{-2}
R_{12}, R_{34} from sext. to spoiler	124.403, 124.404 m
beta functions (x, y) at spoiler	77.381,77.381 m
rms spot size (x, y) at spoiler	215.89, 263.96 µm

Collimator layout and setting

-	Collimator type	LHC present collimation system (sigma units)	LHC non-linear collimation system (sigma units)	7 TeV
	TCSG	All @ 7.0	Aff (a) 10.0 A6L7 - tot opened B5L7 - tot opened D4L7 - tot opened B4L7 - tot opened A4L7 - 16.0 [0 rad] A4R7 - 8.0[1.571rad] B4R7 - 9.0 [2.37rad] A5R7 - 9.0 [.651rad] B5R7 - 9.0 C5R7 - 9.0 E5R7 - 9.0 E5R7 - 9.0 6R7 - 9.0	Primary collimators 3 Additional Secondary collimators
-	TCLA	All @ 10.0	A6R7 - 9.0 B6R7 - 9.0 C6R7 - 7.0 D6R7 - 7.0 A7R7 - 7.0	
ColUS - July 13th,	2012		6	L. Lari & J. Resta Lope

Preliminary beam tracking studies

In the past we performed some rough DA estimates using madx:

- Particle tracking studies for 10⁵ turns
- $\Delta\beta/\beta\approx 17\%$; $\Delta D_x/D_x\approx 12\%$; $\Delta p/p\approx 0.02\%$
- No additional multipole errors
- $DA \approx 22\sigma$
- Further studies with SixTrack and more realistic conditions are in progress

ColUS - July 13th, 2012

7

L. Lari & J. Resta Lopez

Cleaning Efficiency studies

• In order to compare the non linear system with the nominal one, the same halo profile in the hor. and vert. plane has been tracked with SixTrack.

Energy Deposition studies

• Starting from the maps of primary proton losses non-elastic collisions in the collimators, calculated via SixTrack, a full particle shower study in IP7 was performed with FLUKA.

0

Energy Deposition studies

• Comparison between peak power densities on the jaw surface of the primary collimator

Energy Deposition studies

• Comparison between peak power densities on the jaw surface of the secondary collimators

Conclusion & Proposal for future work

- DA aperture studies for the LHC with nonlinear collimation, using SixTrack, including realistic multipole errors, and other imperfections (e.g. $\Delta\beta/\beta=20\%$, overall beta beat budget).
- Investigate a new nonlinear optics for IR3.
- Investigate the possibility of combining both nonlinear and crystal collimation: since the nonlinear elements guide the particles in a preferred direction, the insertion of crystals could improve the efficiency of the system.
- Design possible experimental tests at the SPS or the LHC.