

Simulations of HL halo loss and IR losses

R. Bruce, F. Cerutti, R. de Maria, A. Marsili, S. Redaelli

Outline

- Introduction: SixTrack
 - Halo / debris tracking
 - Trajectories
 - Results validation with measurements
- Halo: ATS results
 - Comparison with 7TeV nominal
- Debris tracking
 - Loss maps
 - TCL scan
- Conclusion

Introduction: Simulation set-up

- Collimation version of SixTrack
 - Particles tracked around the ring
 - 6 dimensions: x, x', y, y', l, E
 - Records scattering / absorption by collimators
- Post-processing: particles lost on aperture
- SixTrack was very succesfully used for system design. Very good agreement with measured loss maps.
- Final energy deposition studies rely on complete simulations by FLUKA
- Good experimental basis: validated results
 - Comparison measurements / simulations

LHC & IR7: comparison measurement / simulation

- Very good agreement in the arcs
- Losses at collimators underestimated (secondary showers?)

R. Bruce, CERN.

HiLumi, Frascati, 14 nov. 2012

LHC Collimation

Proied

CERN

Halo / debris

- Halo loss simulations for collimation cleaning
 - Principal assessment of collimation performance
 - Limitations in dedicated betatron and momentum cleaning insertion regions (IR3 and IR7)
 - IR loads from incoming beams (tertiary collimators)
 - Multiturn simulations
- Debris loss simulation: tracking debris from Interaction Points (IPs) around the ring
 - Tracking of protons that experience collision
 - Two effects: shift in momentum, extra kicks (x', y')
 - Distributions simulated by the FLUKA team
 - Most particles lost immediately downstream of IP

A. Marsili, BE-ABP-LCU, CERN.

Particle tracking: "flat" dp/p distribution

A. Marsili, BE-ABP-LCU, CERN.

HiLumi, Frascati, 14 nov. 2012

LHC Collimation

Proiect

CERN

ATS halo tracking

A. Marsili, BE-ABP-LCU, CERN.

First results for ATS optics

- ATS: $\beta^* = 15 \text{ cm}$
- Preliminary results:
 - Collimator hierarchy not fully decided
 - Preliminary aperture for post-processing
 - Work still in progress
- Used for first comparison with nominal case
- Debris: evaluate the (specific) need for protection in dispersion suppressors.

A. Marsili, BE-ABP-LCU, CERN.

Collimator settings

Coll. setting	σ
TCP IR7	6.
TCSG IR7	7.
TCLA IR7	10.
TCP IR3	12.
TCSG IR3	15.6
TCLA IR3	17.6

Coll. setting	σ
TCLP	12.
TCLI	open
TCSTCDQ IR6	7.5
TCDQ IR6	8.
TDI	open
TCT IR1/5/8	8.3
TCT IR2	12.

- Nominal settings at 7 TeV
- Note: TCT partially closed in IR2/8 (to be reconsidered)

A. Marsili, BE-ABP-LCU, CERN.

11

A. Marsili, BE-ABP-LCU, CERN.

Debris tracking

A. Marsili, BE-ABP-LCU, CERN.

4TeV example: 6400 collisions first turn, sorted by dp/p

Preliminary loss map ATS debris, 2 turns

A. Marsili, BE-ABP-LCU, CERN.

LHC Collimation

Proiect

CERN

Debris tracking benchmarking at 4 TeV: TCL scans

A. Marsili, BE-ABP-LCU, CERN.

- Loss at TCL decrease: TCL retracting
- Losses downstream TCL increase: losing protection
- Different loss evolutions depending on the position
- Can we reproduce such behaviours?

TCL scan

- At first turn
- More and more particles survive TCL
- Particles with higher dp/p
- Lost closer to the TCL

- Sum of aperture losses in Q7, cell 8, cell 9
- Work in progress: Trying to match these results to the measurements
- The furthest the losses are, the sooner they increase

• Very encouraging result A. Marsili, BE-ABP-LCU, CERN.

Conclusion

- First results, with halo and debris tracking, for different optics
- Halo tracking validated by loss maps
- Ongoing effort to understand in details TCL scan SixTrack simulations knowing the measurements
- Discovered possible new limitations: peaks in arc 81
- Outlook
 - Test different TCL settings for protection
 - Still perfect machine. Add errors
 - Only IP1: simulation from other IPs
 - Simulate B2

A. Marsili, BE-ABP-LCU, CERN.

Thank you for your attention

A. Marsili, BE-ABP-LCU, CERN.

- Distributions of protons with θ and dp/p from FLUKA
- Only inelastic contributions
- $x' = tan(\theta)sin(\varphi)$ $y' = tan(\theta)cos(\varphi)$ $\varphi \in [0; 2\pi]$
- Distribution of θ is cut at the opening of the TAS
- Distribution of dp/p is cut at 0.1

0.0006

0.0008

0.0010

 θ [rad]

0.0012

Effect of the cut

0.0004

 θ [rad]

0.0006

0.0002

Used to generate the extra kicks in x' and y'

0.0008

These distributions are wider than the nominal ones.

A. Marsili, BE-ABP-LCU, CERN.

0.0014

0.0016 +3.14

- Most protons with small dp/p, but long tail (cut)
- Protons with higher θ or dp/p would be lost anyway during tracking: momentum & betatron acceptance

CERN