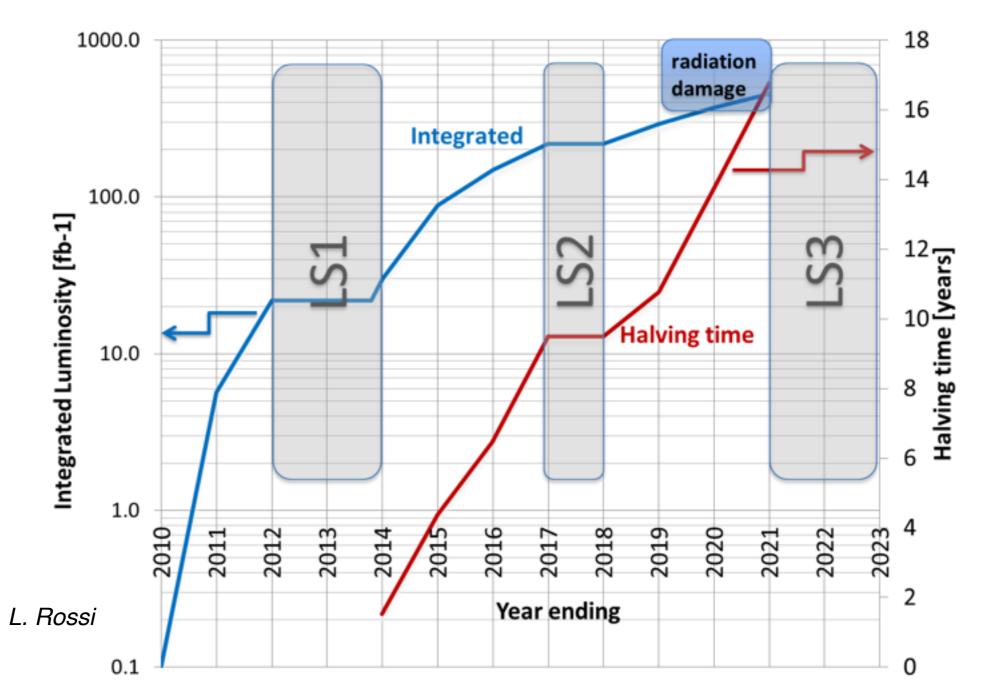
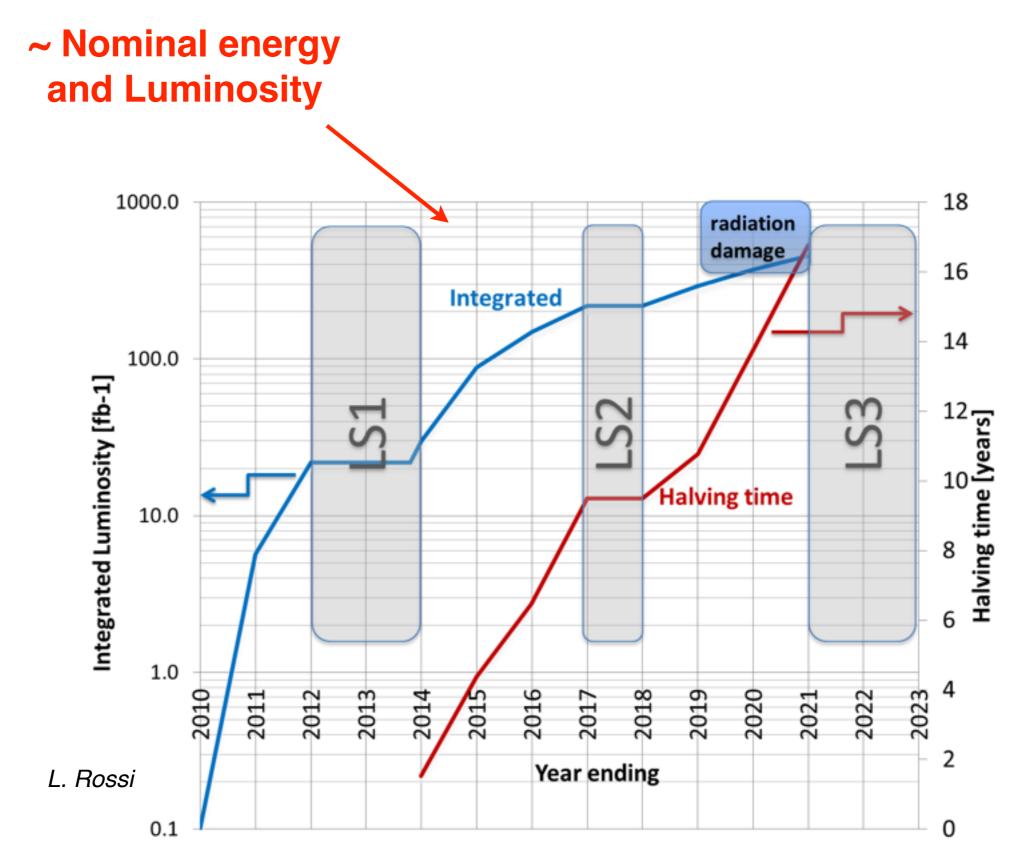
6th Collimation Upgrade Specification Meeting CERN, Geneva, Switzerland April 20th, 2012

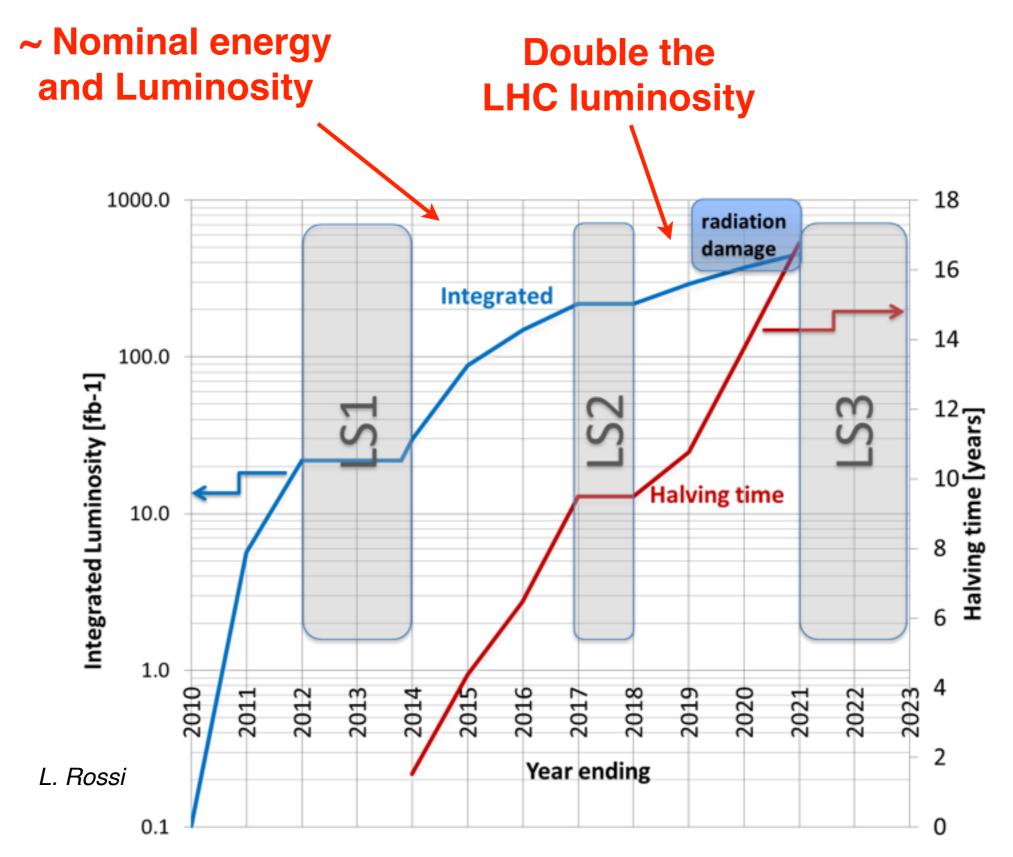
Collimator upgrade scenarios for impedance calculations

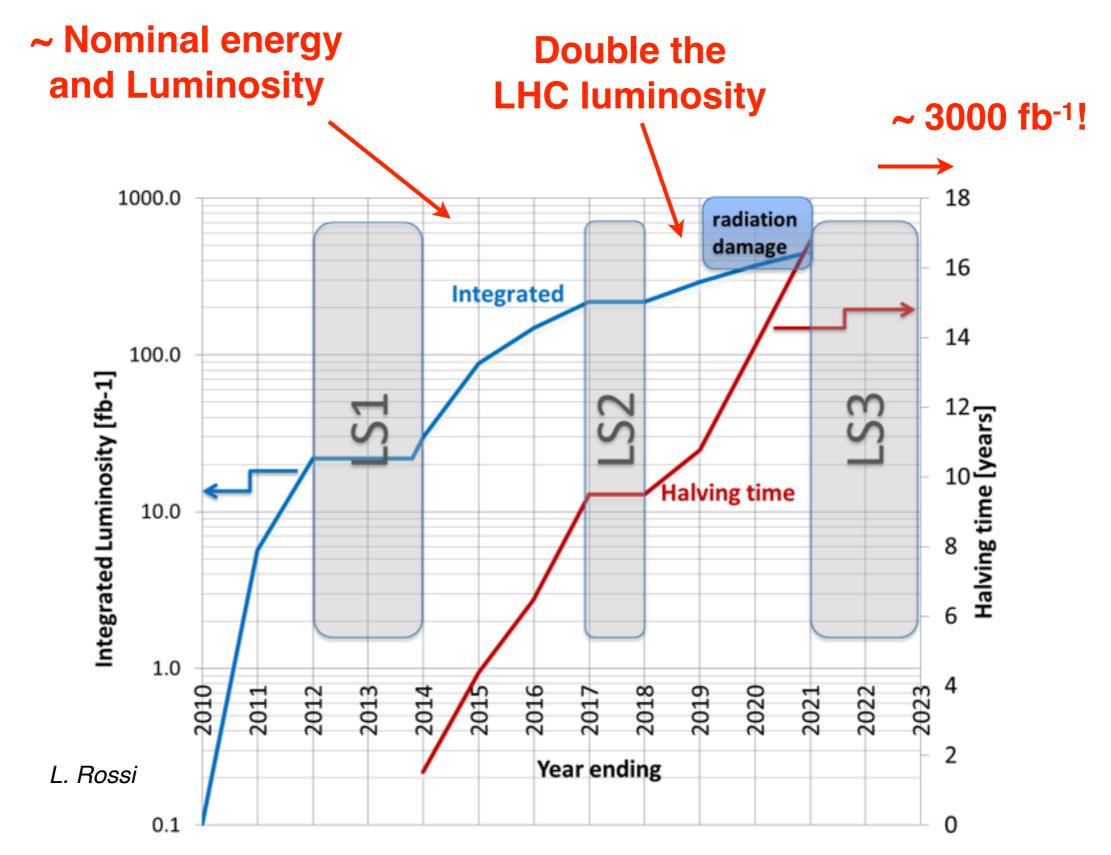
S. Redaelli and R. Bruce based on previous studies by the collimation team



Introduction Upgrade strategy Scenarios for settings Conclusions







✓ Improve the cleaning performance

- System limitations: dispersion suppressors of cleaning (IR3/7) and experimental (IR1/2/5) regions

✓ Improve the cleaning performance

- System limitations: dispersion suppressors of cleaning (IR3/7) and experimental (IR1/2/5) regions

✓ Improve impedance and robustness

- State-of-the-art new material for collimator jaws
- Improved robustness at critical locations (like TCTs)

☑ Improve the **cleaning performance**

- System limitations: dispersion suppressors of cleaning (IR3/7) and experimental (IR1/2/5) regions

✓ Improve impedance and robustness

- State-of-the-art new material for collimator jaws
- Improved robustness at critical locations (like TCTs)

Be ready to replace collimators if they brake

- Collimator will age: HW designed for 10 y lifetime
- We know that the relevant mechanical/electrical properties will change

☑ Improve the **cleaning performance**

- System limitations: dispersion suppressors of cleaning (IR3/7) and experimental (IR1/2/5) regions

Improve impedance and robustness

- State-of-the-art new material for collimator jaws
- Improved robustness at critical locations (like TCTs)

Be ready to replace collimators if they brake

- Collimator will age: HW designed for 10 y lifetime
- We know that the relevant mechanical/electrical properties will change

Operational efficiency / machine protection aspects

- Faster collimator alignment, improved alignment accuracy
- More flexibility for machine configurations (experimental regions)
- Improved settings monitoring and machine protection

☑ Improve the **cleaning performance**

- System limitations: dispersion suppressors of cleaning (IR3/7) and experimental (IR1/2/5) regions

Improve impedance and robustness

- State-of-the-art new material for collimator jaws
- Improved robustness at critical locations (like TCTs)

Be ready to replace collimators if they brake

- Collimator will age: HW designed for 10 y lifetime
- We know that the relevant mechanical/electrical properties will change

Operational efficiency / machine protection aspects

- Faster collimator alignment, improved alignment accuracy
- More flexibility for machine configurations (experimental regions)
- Improved settings monitoring and machine protection

Achieve remote handling in high radiation environment

- Quick collimator replacement in hottest LHC locations

☑ Improve the **cleaning performance**

- System limitations: dispersion suppressors of cleaning (IR3/7) and experimental (IR1/2/5) regions

Improve impedance and robustness

- State-of-the-art new material for collimator jaws
- Improved robustness at critical locations (like TCTs)

Be ready to replace collimators if they brake

- Collimator will age: HW designed for 10 y lifetime
- We know that the relevant mechanical/electrical properties will change

Operational efficiency / machine protection aspects

- Faster collimator alignment, improved alignment accuracy
- More flexibility for machine configurations (experimental regions)
- Improved settings monitoring and machine protection

Achieve remote handling in high radiation environment

- Quick collimator replacement in hottest LHC locations

✓ New layouts in experimental regions for Hi-Lumi

- Re-think IR1/5 collimation for new optics options/constraints

☑ Improve the **cleaning performance**

- System limitations: dispersion suppressors of cleaning (IR3/7) and experimental (IR1/2/5) regions

✓ Improve impedance and robustness

- State-of-the-art new material for collimator jaws
- Improved robustness at critical locations (like TCTs)

Be ready to replace collimators if they brake

- Collimator will age: HW designed for 10 y lifetime
- We know that the relevant mechanical/electrical properties will change

Operational efficiency / machine protection aspects

- Faster collimator alignment, improved alignment accuracy
- More flexibility for machine configurations (experimental regions)
- Improved settings monitoring and machine protection

Achieve remote handling in high radiation environment

- Quick collimator replacement in hottest LHC locations

✓ New layouts in experimental regions for Hi-Lumi

- Re-think IR1/5 collimation for new optics options/constraints

☑ New injection / dump collimation → Injection&dump team

Upgrade strategy (I)

Upgrade strategy (I)

Shutdowns 2010-11 and 2011-12

- New IR2 layout for improved ALICE data taking
- Software for faster and more robust collimator alignment
- Improved protection strategy (β^* limits)
- Improved controls HW: OP efficiency against downtimes from radiation

Upgrade strategy (I)

Shutdowns 2010-11 and 2011-12

- New IR2 layout for improved ALICE data taking
- Software for faster and more robust collimator alignment
- Improved protection strategy (β^* limits)
- Improved controls HW: OP efficiency against downtimes from radiation

LS1 (LHC energy to nominal)

- **BPM-integrated design** in experimental and dump regions (16 tertiary and 2 secondary) \rightarrow **Faster** alignment in the IP's, **smaller** β^* , improved **machine protection.**
- New IP8 layout (to allow installation of TCTs with BPMs)
- Considering new passive absorbers in IP3 (longer lifetime of warm magnets)
- Replacement of electronics components to improve redundancy
- Update the air duct in the cleaning insertion

Upgrade strategy (II)

Upgrade strategy (II)

LS2 (double LHC luminosity)

- Possible first upgrade of experimental regions: DS collimators
- Additional collimators equipped with **BPMs** (faster alignment, better protection)
- Improved design and new materials (less impedance, more robustness)
- In particular, new robust TCTs for improved beta* reach
- Investigate collimator HW aging / lifetime
- Remote handling (partly)

Upgrade strategy (II)

LS2 (double LHC luminosity)

- Possible first upgrade of experimental regions: DS collimators
- Additional collimators equipped with **BPMs** (faster alignment, better protection)
- Improved design and new materials (less impedance, more robustness)
- In particular, new robust TCTs for improved beta* reach
- Investigate collimator HW aging / lifetime
- Remote handling (partly)

LS3 (Hi-Lumi LHC)

- Re-design of collimator layout in the experiments regions

(DS collimators + additional local protection for ATS optics)

- Complete DS collimation in all the required IRs (also IR3/7 if needed)
- New collimator materials to replace collimators that have aged. BPM design.
- Fully remote handling in radiation environment
- New concepts for improved cleaning (crystal, hollow e-lens) if needed

$\mathrm{NSIG}_{\mathrm{tight}}^{4 \mathrm{TeV}} = \mathrm{NSIG}_{7 \mathrm{TeV}} \times $	$\frac{4 \text{ TeV}}{7 \text{ TeV}}$
--	---------------------------------------

	Relaxed Nominal		Tight at 4 TeV
TCP-IR7	5.7	6.0	4.5
TCSG-IR7	8.5	7.0	5.3
TCLA-IR7	17.7	10.0	7.6
TCTs IP1/5/8	11.8	8.3	6.3
TCSG-IR6	9.3	7.5	5.7
TCDQ-IR6	10.6	8.0	6.0

$$\mathrm{NSIG_{tight}^{4 \ TeV} = NSIG_{7 \ TeV} \times \sqrt{\frac{4 \ TeV}{7 \ TeV}}}$$

	Relaxed 2011	Nominal	Tight at 4 TeV	Tight 2012
TCP-IR7	5.7	6.0	4.5	4.3
TCSG-IR7	8.5	7.0	5.3	6.3
TCLA-IR7	17.7	10.0	7.6	8.3
TCTs IP1/5/8	11.8	8.3	6.3	9.0
TCSG-IR6	9.3	7.5	5.7	7.1
TCDQ-IR6	10.6	8.0	6.0	7.6

$$NSIG_{tight}^{4 \text{ TeV}} = NSIG_{7 \text{ TeV}} \times \sqrt{\frac{4 \text{ TeV}}{7 \text{ TeV}}}$$

	Relaxed 2011	Nominal	Tight at 4 TeV	Tight 2012
TCP-IR7	5.7	6.0	4.5	4.3
TCSG-IR7	8.5	7.0	5.3	6.3
TCLA-IR7	17.7	10.0	7.6	8.3
TCTs IP1/5/8	11.8	8.3	6.3	9.0
TCSG-IR6	9.3	7.5	5.7	7.1
TCDQ-IR6	10.6	8.0	6.0	7.6

✓ Reminder: Achieved nominal injection settings at 450 GeV!

$\mathrm{NSIG}_{\mathrm{tight}}^{4 \mathrm{TeV}} = \mathrm{NSIG}_{7 \mathrm{TeV}} \times \sqrt{2}$	$\frac{4 \text{ TeV}}{7 \text{ TeV}}$
--	---------------------------------------

	Relaxed 2011	Nominal	Tight at 4 TeV	Tight 2012
TCP-IR7	5.7	6.0	4.5	4.3
TCSG-IR7	8.5	7.0	5.3	6.3
TCLA-IR7	17.7	10.0	7.6	8.3
TCTs IP1/5/8	11.8	8.3	6.3	9.0
TCSG-IR6	9.3	7.5	5.7	7.1
TCDQ-IR6	10.6	8.0	6.0	7.6

- Reminder: Achieved nominal injection settings at 450 GeV!
- Presently we use "relaxed" tight settings at 4 TeV
 - MD studies in 2011 showed that we can achieve these settings with one single system alignment per year. With one beam we could achieve tight settings.
 - Only TCP gaps are equivalent to the nominal 7 TeV settings in mm

$\mathrm{NSIG}_{\mathrm{tight}}^{4 \mathrm{TeV}} = \mathrm{NSIG}_{7 \mathrm{TeV}} \times \sqrt{2}$	$\frac{4 \text{ TeV}}{7 \text{ TeV}}$
--	---------------------------------------

	Relaxed 2011	Nominal	Tight at 4 TeV	Tight 2012
TCP-IR7	5.7	6.0	4.5	4.3
TCSG-IR7	8.5	7.0	5.3	6.3
TCLA-IR7	17.7	10.0	7.6	8.3
TCTs IP1/5/8	11.8	8.3	6.3	9.0
TCSG-IR6	9.3	7.5	5.7	7.1
TCDQ-IR6	10.6	8.0	6.0	7.6

- Reminder: Achieved nominal injection settings at 450 GeV!
- Presently we use "relaxed" tight settings at 4 TeV
 - MD studies in 2011 showed that we can achieve these settings with one single system alignment per year. With one beam we could achieve tight settings.
 - Only TCP gaps are equivalent to the nominal 7 TeV settings in mm
- ✓ We will consider 2 cases at 7 TeV:
 - (1) Same in millimeters settings achieved this year
 - (2) Nominal canonical retractions (TCP/TCSG/TCTs = 6.0/7.0/8.4)

$NSIG_{tight}^{4 \text{ TeV}} = NSIG_{7 \text{ TeV}} \times $	$\frac{4 \text{ TeV}}{7 \text{ TeV}}$
V	/ lev

	Relaxed 2011	Nominal	Tight at 4 TeV	Tight 2012
TCP-IR7	5.7	6.0	4.5	4.3
TCSG-IR7	8.5	7.0	5.3	6.3
TCLA-IR7	17.7	10.0	7.6	8.3
TCTs IP1/5/8	11.8	8.3	6.3	9.0
TCSG-IR6	9.3	7.5	5.7	7.1
TCDQ-IR6	10.6	8.0	6.0	7.6

- Reminder: Achieved nominal injection settings at 450 GeV!
- Presently we use "relaxed" tight settings at 4 TeV
 - MD studies in 2011 showed that we can achieve these settings with one single system alignment per year. With one beam we could achieve tight settings.
 - Only TCP gaps are equivalent to the nominal 7 TeV settings in mm
- ✓ We will consider 2 cases at 7 TeV:
 - (1) Same in millimeters settings achieved this year
 - (2) Nominal canonical retractions (TCP/TCSG/TCTs = 6.0/7.0/8.4)
- Setimates to be updated: target beta* and benefits of BPM design

2012 settings

Parameter	Unit	Plane	Туре	Set 1	Set 2	Set 3	Set 4
				Injection	Top energy	Squeezed	Collision
Energy	[GeV]	n.a.	n.a.	450	4000	4000	4000
β^* in IR1/5	[m]	n.a.	n.a.	11.0	11.0	0.6	0.6
β^* in IR2	[m]	n.a.	n.a.	10.0	10.0	3.0	3.0
β^* in IR8	[m]	n.a.	n.a.	10.0	10.0	3.0	3.0
Crossing angle IR1/5	$[\mu rad]$	n.a.	n.a.	170	145	145	145
Crossing angle IR2	$[\mu rad]$	n.a.	n.a.	170	220 (H)	220 (H)	100 (V)
Crossing angle IR8	$[\mu rad]$	n.a.	n.a.	170	90	90	90
Beam separation	[mm]	n.a.	n.a.	2.0	0.65	0.65	0.0
Primary cut IR7	[σ]	H,V,S	TCP	5.7	4.3	4.3	4.3
Secondary cut IR7	[σ]	H,V,S	TCSG	6.7	6.3	6.3	6.3
Quartiary cut IR7	[σ]	H,V	TCLA	10.0	8.3	8.3	8.3
Primary cut IR3	[σ]	H	TCP	8.0	12.0	12.0	12.0
Secondary cut IR3	[σ]	H	TCSG	9.3	15.6	15.6	15.6
Quartiary cut IR3	[σ]	H,V	TCLA	10.0	17.6	17.6	17.6
Tertiary cut IR1/5	[σ]	H,V	TCT	13.0	26.0	9.0	9.0
Tertiary cut IR2/8	[σ]	H,V	TCT	13.0	26.0	12.0	12.0
Physics debris collimators	[σ]	H	TCL	out	out	out	10.0
Primary protection IR6	[σ]	H	TCSG	7.0	7.1	7.1	7.1
Secondary protection IR6	[σ]	H	TCDQ	8.0	7.6	7.6	7.6

4 sets of beam-based settings, smooth transition between different sets.

Each setting set must be validated by loss maps.

2012 settings

Parameter	Unit	Plane	Туре	Set 1	Set 2	Set 3	Set 4
				Injection	Top energy	Squeezed	Collision
Energy	[GeV]	n.a.	n.a.	450	4000	4000	4000
β^* in IR1/5	[m]	n.a.	n.a.	11.0	11.0	0.6	0.6
β^* in IR2	[m]	n.a.	n.a.	10.0	10.0	3.0	3.0
β^* in IR8	[m]	n.a.	n.a.	10.0	10.0	3.0	3.0
Crossing angle IR1/5	$[\mu rad]$	n.a.	n.a.	170	145	145	145
Crossing angle IR2	$[\mu rad]$	n.a.	n.a.	170	220 (H)	220 (H)	100 (V)
Crossing angle IR8	$[\mu rad]$	n.a.	n.a.	170	90	90	90
Beam separation	[mm]	n.a.	n.a.	2.0	0.65	0.65	0.0
Primary cut IR7	[σ]	H,V,S	TCP	5.7	4.3	4.3	4.3
Secondary cut IR7	[σ]	H,V,S	TCSG	6.7	6.3	6.3	6.3
Quartiary cut IR7	[σ]	H,V	TCLA	10.0	8.3	8.3	8.3
Primary cut IR3	[σ]	Н	TCP	8.0	12.0	12.0	12.0
Secondary cut IR3	[σ]	Η	TCSG	9.3	15.6	15.6	15.6
Quartiary cut IR3	[σ]	H,V	TCLA	10.0	17.6	17.6	17.6
Tertiary cut IR1/5	[σ]	H,V	TCT	13.0	26.0	9.0	9.0
Tertiary cut IR2/8	[σ]	H,V	TCT	13.0	26.0	12.0	12.0
Physics debris collimators	[σ]	H	TCL	out	out	out	10.0
Primary protection IR6	[σ]	Н	TCSG	7.0	7.1	7.1	7.1
Secondary protection IR6	[σ]	H	TCDQ	8.0	7.6	7.6	7.6

4 sets of beam-based settings, smooth transition between different sets.

Each setting set must be validated by loss maps.

2012 settings

Parameter	Unit	Plane	Туре	Set 1	Set 2	Set 3	Set 4
				Injection	Top energy	Squeezed	Collision
Energy	[GeV]	n.a.	n.a.	450	4000	4000	4000
β^* in IR1/5	[m]	n.a.	n.a.	11.0	11.0	0.6	0.6
β^* in IR2	[m]	n.a.	n.a.	10.0	10.0	3.0	3.0
β^* in IR8	[m]	n.a.	n.a.	10.0	10.0	3.0	3.0
Crossing angle IR1/5	$[\mu rad]$	n.a.	n.a.	170	145	145	145
Crossing angle IR2	$[\mu rad]$	n.a.	n.a.	170	220 (H)	220 (H)	100 (V)
Crossing angle IR8	$[\mu rad]$	n.a.	n.a.	170	90	90	90
Beam separation	[mm]	n.a.	n.a.	2.0	0.65	0.65	0.0
Primary cut IR7	[σ]	H,V,S	TCP	5.7	4.3	4.3	4.3
Secondary cut IR7	[σ]	H,V,S	TCSG	6.7	6.3	6.3	6.3
Quartiary cut IR7	[σ]	H,V	TCLA	10.0	8.3	8.3	8.3
Primary cut IR3	[σ]	Н	TCP	8.0	12.0	12.0	12.0
Secondary cut IR3	[σ]	H	TCSG	9.3	15.6	15.6	15.6
Quartiary cut IR3	[σ]	H,V	TCLA	10.0	17.6	17.6	17.6
Tertiary cut IR1/5	[σ]	H,V	TCT	13.0	26.0	9.0	9.0
Tertiary cut IR2/8	[σ]	H,V	TCT	13.0	26.0	12.0	12.0
Physics debris collimators	[σ]	H	TCL	out	out	out	10.0
Primary protection IR6	[σ]	H	TCSG	7.0	7.1	7.1	7.1
Secondary protection IR6	[σ]	H	TCDQ	8.0	7.6	7.6	7.6

4 sets of beam-based settings, smooth transition between different sets.

Each setting set must be validated by loss maps.

Reminder of present collimation

Table 1:	List of	movable	LHC	collimators.
----------	---------	---------	-----	--------------

Functional type	Name	Plane	Num.	Material
Primary IR3	TCP	Η	2	CFC
Secondary IR3	TCSG	Н	8	CFC
Absorbers IR3	TCLA	H,V	8	W
Primary IR7	TCP	H,V,S	6	CFC
Secondary IR7	TCSG	H,V,S	22	CFC
Absorbers IR7	TCLA	H,V	10	W
Tertiary IR1/2/5/8	TCT	H,V	16	W
Physics debris absor.	TCL	H	4	Cu
Dump protection	TCSG	H	2	CFC
	TCDQ	Η	2	С
Inj. prot. (lines)	TCDI	H,V	13	CFC
Inj. prot. (ring)	TDI	V	2	С
	TCLI	V	4	CFC
	TCDD	V	1	CFC

Reminder: all settings will be given in units of the betatron beam size along the collimator axis:

$$\sigma_{\rm coll} = \sqrt{\beta_{\rm coll} \epsilon_{\rm nom.}}$$

$$\beta_{\rm coll} = \sqrt{\beta_x^2 \cos^2(\theta_{\rm coll}) + \beta_y^2 \sin^2(\theta_{\rm coll})}$$

Parameter	Unit	Plane	Туре	Mat.	Case 1	Case 2
Primary cut IR7	[σ]	H,V,S	TCP	C	5.7	5.7
Secondary cut IR7	[σ]	H,V,S	TCSG	C	7.7	6.7
Quartiary cut IR7	[σ]	H,V	TCLA	W	9.7	9.0
Tertiary cut IR1/5	[σ]	H,V	TCT	W	10.4	9.5
Tertiary cut IR2/8	[σ]	H,V	TCT	W	12.0	12.0
Physics debris collimators	[σ]	H	TCL	Cu	12.0	12.0
Primary protection IR6	[σ]	H	TCSG	C	8.5	7.5
Secondary protection IR6	[σ]	H	TCDQ	C	9.0	8.0
Primary cut IR3	[σ]	H	TCP	C	12.0	12.0
Secondary cut IR3	[σ]	H	TCSG	C	15.6	15.6
Quartiary cut IR3	[σ]	H,V	TCLA	W	17.6	17.6

Parameter	Unit	Plane	Туре	Mat.	Case 1	Case 2
Primary cut IR7	[σ]	H,V,S	TCP	С	5.7	5.7
Secondary cut IR7	[σ]	H,V,S	TCSG	C	7.7	6.7
Quartiary cut IR7	[σ]	H,V	TCLA	W	9.7	9.0
Tertiary cut IR1/5	[σ]	H,V	TCT	W	10.4	9.5
Tertiary cut IR2/8	[σ]	H,V	TCT	W	12.0	12.0
Physics debris collimators	[σ]	H	TCL	Cu	12.0	12.0
Primary protection IR6	[σ]	H	TCSG	C	8.5	7.5
Secondary protection IR6	[σ]	H	TCDQ	C	9.0	8.0
Primary cut IR3	[σ]	H	TCP	С	12.0	12.0
Secondary cut IR3	[σ]	H	TCSG	C	15.6	15.6
Quartiary cut IR3	[σ]	H,V	TCLA	W	17.6	17.6

Case 1: essentially the same settings in mm than in 2012

- Based on R. Bruce's work presented at Evian2011
- Case 1 is slightly tighter than 2012 settings: kept a 2 sigma retraction

Parameter	Unit	Plane	Туре	Mat.	Case 1	Case 2
Primary cut IR7	[σ]	H,V,S	TCP	С	5.7	5.7
Secondary cut IR7	[σ]	H,V,S	TCSG	C	7.7	6.7
Quartiary cut IR7	[σ]	H,V	TCLA	W	9.7	9.0
Tertiary cut IR1/5	[σ]	H,V	TCT	W	10.4	9.5
Tertiary cut IR2/8	[σ]	H,V	TCT	W	12.0	12.0
Physics debris collimators	[σ]	H	TCL	Cu	12.0	12.0
Primary protection IR6	[σ]	H	TCSG	C	8.5	7.5
Secondary protection IR6	[σ]	H	TCDQ	C	9.0	8.0
Primary cut IR3	[σ]	H	TCP	С	12.0	12.0
Secondary cut IR3	[σ]	H	TCSG	C	15.6	15.6
Quartiary cut IR3	[σ]	H,V	TCLA	W	17.6	17.6

☑ Case 1: essentially the same settings in mm than in 2012

- Based on R. Bruce's work presented at Evian2011
- Case 1 is slightly tighter than 2012 settings: kept a 2 sigma retraction

Case 2: we are confident that we can achieve nominal settings

- If achievable, updated beta* will be established!

Parameter	Unit	Plane	Туре	Mat.	Case 1	Case 2
Primary cut IR7	[σ]	H,V,S	TCP	С	5.7	5.7
Secondary cut IR7	[σ]	H,V,S	TCSG	C	7.7	6.7
Quartiary cut IR7	[σ]	H,V	TCLA	W	9.7	9.0
Tertiary cut IR1/5	[σ]	H,V	TCT	W	10.4	9.5
Tertiary cut IR2/8	[σ]	H,V	TCT	W	12.0	12.0
Physics debris collimators	[σ]	H	TCL	Cu	12.0	12.0
Primary protection IR6	[σ]	H	TCSG	C	8.5	7.5
Secondary protection IR6	[σ]	H	TCDQ	C	9.0	8.0
Primary cut IR3	[σ]	H	TCP	С	12.0	12.0
Secondary cut IR3	[σ]	H	TCSG	C	15.6	15.6
Quartiary cut IR3	[σ]	H,V	TCLA	W	17.6	17.6

☑ Case 1: essentially the same settings in mm than in 2012

- Based on R. Bruce's work presented at Evian2011
- Case 1 is slightly tighter than 2012 settings: kept a 2 sigma retraction

☑ Case 2: we are confident that we can achieve nominal settings

- If achievable, updated beta* will be established!

Remark: BPM-design benefits not taken into account

- They will have an impact on the minimum TCT settings.

Parameter	Unit	Plane	Туре	Mat.	Case 1	Case 2
Primary cut IR7	[σ]	H,V,S	TCP	С	5.7	5.7
Secondary cut IR7	[σ]	H,V,S	TCSG	C	7.7	6.7
Secondary cut IR7	[σ]	H,V,S	TCSM	W	7.7	6.7
Quartiary cut IR7	[σ]	H,V	TCLA	W	9.7	9.0
Tertiary cut IR1/5	[σ]	H,V	TCT	W	10.4	9.5
Tertiary cut IR2/8	[σ]	H,V	TCT	W	12.0	12.0
Physics debris collimators	[σ]	Н	TCL	Cu	12.0	12.0
Primary protection IR6	[σ]	Н	TCSG	C	8.5	7.5
Secondary protection IR6	[σ]	H	TCDQ	C	9.0	8.0
Primary cut IR3	[σ]	H	TCP	С	12.0	12.0
Secondary cut IR3	[σ]	H	TCSG	C	15.6	15.6
Quartiary cut IR3	[σ]	H,V	TCLA	W	17.6	17.6
Local DS cleaning in IR1/5 or IR2	[σ]	Н	TCLD	Cu/W	12.0	12.0

Parameter	Unit	Plane	Туре	Mat.	Case 1	Case 2
Primary cut IR7	[σ]	H,V,S	TCP	C	5.7	5.7
Secondary cut IR7	[σ]	H,V,S	TCSG	С	7.7	6.7
Secondary cut IR7	[σ]	H,V,S	TCSM	W	7.7	6.7
Quartiary cut IR7	[σ]	H,V	TCLA	W	9.7	9.0
Tertiary cut IR1/5	[σ]	H,V	TCT	W	10.4	9.5
Tertiary cut IR2/8	[σ]	H,V	TCT	W	12.0	12.0
Physics debris collimators	[σ]	Н	TCL	Cu	12.0	12.0
Primary protection IR6	[σ]	Н	TCSG	C	8.5	7.5
Secondary protection IR6	[σ]	H	TCDQ	C	9.0	8.0
Primary cut IR3	[σ]	H	TCP	С	12.0	12.0
Secondary cut IR3	[σ]	H	TCSG	C	15.6	15.6
Quartiary cut IR3	[σ]	H,V	TCLA	W	17.6	17.6
Local DS cleaning in IR1/5 or IR2	[σ]	Н	TCLD	Cu/W	12.0	12.0

Parameter	Unit	Plane	Туре	Mat.	Case 1	Case 2
Primary cut IR7	[σ]	H,V,S	TCP	С	5.7	5.7
Secondary cut IR7	[σ]	H,V,S	TCSG	C	7.7	6.7
Secondary cut IR7	[σ]	H,V,S	TCSM	W	7.7	6.7
Quartiary cut IR7	[σ]	H,V	TCLA	W	9.7	9.0
Tertiary cut IR1/5	[σ]	H,V	TCT	W	10.4	9.5
Tertiary cut IR2/8	[σ]	H,V	TCT	W	12.0	12.0
Physics debris collimators	[σ]	Н	TCL	Cu	12.0	12.0
Primary protection IR6	[σ]	Н	TCSG	C	8.5	7.5
Secondary protection IR6	[σ]	H	TCDQ	C	9.0	8.0
Primary cut IR3	[σ]	H	TCP	С	12.0	12.0
Secondary cut IR3	[σ]	H	TCSG	C	15.6	15.6
Quartiary cut IR3	[σ]	H,V	TCLA	W	17.6	17.6
Local DS cleaning in IR1/5 or IR2	[σ]	H	TCLD	Cu/W	12.0	12.0

W Two differences from previous cases:

- A. Possibility to have new metallic (low-impedance) TCSG's in IR7.
- B. Possibility to equip some IRs with new DS collimators

Parameter	Unit	Plane	Туре	Mat.	Case 1	Case 2
Primary cut IR7	[σ]	H,V,S	TCP	С	5.7	5.7
Secondary cut IR7	[σ]	H,V,S	TCSG	C	7.7	6.7
Secondary cut IR7	[σ]	H,V,S	TCSM	W	7.7	6.7
Quartiary cut IR7	[σ]	H,V	TCLA	W	9.7	9.0
Tertiary cut IR1/5	[σ]	H,V	TCT	W	10.4	9.5
Tertiary cut IR2/8	[σ]	H,V	TCT	W	12.0	12.0
Physics debris collimators	[σ]	Н	TCL	Cu	12.0	12.0
Primary protection IR6	[σ]	Н	TCSG	C	8.5	7.5
Secondary protection IR6	[σ]	H	TCDQ	C	9.0	8.0
Primary cut IR3	[σ]	H	TCP	С	12.0	12.0
Secondary cut IR3	[σ]	Н	TCSG	C	15.6	15.6
Quartiary cut IR3	[σ]	H,V	TCLA	W	17.6	17.6
Local DS cleaning in IR1/5 or IR2	[σ]	Н	TCLD	Cu/W	12.0	12.0

W Two differences from previous cases:

A. Possibility to have new metallic (low-impedance) TCSG's in IR7.

B. Possibility to equip some IRs with new DS collimators

☑ Additional BPM-design collimators in the cleaning insertions

Parameter	Unit	Plane	Туре	Mat.	Case 1	Case 2
Primary cut IR7	[σ]	H,V,S	TCP	С	5.7	5.7
Secondary cut IR7	[σ]	H,V,S	TCSG	C	7.7	6.7
Secondary cut IR7	[σ]	H,V,S	TCSM	W	7.7	6.7
Quartiary cut IR7	[σ]	H,V	TCLA	W	9.7	9.0
Tertiary cut IR1/5	[σ]	H,V	TCT	W	10.4	9.5
Tertiary cut IR2/8	[σ]	H,V	TCT	W	12.0	12.0
Physics debris collimators	[σ]	Н	TCL	Cu	12.0	12.0
Primary protection IR6	[σ]	Н	TCSG	C	8.5	7.5
Secondary protection IR6	[σ]	H	TCDQ	C	9.0	8.0
Primary cut IR3	[σ]	H	TCP	С	12.0	12.0
Secondary cut IR3	[σ]	Н	TCSG	C	15.6	15.6
Quartiary cut IR3	[σ]	H,V	TCLA	W	17.6	17.6
Local DS cleaning in IR1/5 or IR2	[σ]	Н	TCLD	Cu/W	12.0	12.0

Two differences from previous cases:

A. Possibility to have new metallic (low-impedance) TCSG's in IR7.

B. Possibility to equip some IRs with new DS collimators

✓ Additional BPM-design collimators in the cleaning insertions

Possible new design for robust TCTs in the pipeline

- Not yet considered in this table

Hi-Lumi scenarios

Parameter	Unit	Plane	Туре	Mat.	Case 1	Case 2	Case 3	Case 4
Primary cut IR7	[σ]	H,V,S	TCP	C	5.7	5.7	5.7	-
Secondary cut IR7	$[\sigma]$	H,V,S	TCSG	C	7.7	6.7	6.7	-
Secondary cut IR7	[σ]	H,V,S	TCSM	W	7.7	6.7	6.7	-
Quartiary cut IR7	[σ]	H,V	TCLA	W	9.7	9.0	9.0	-
Tertiary cut IR1/5	[σ]	H,V	TCT	W	10.4	9.5	9.5	9.5
Tertiary cut IR2/8	$[\sigma]$	H,V	TCT	W	12.0	12.0	12.0	12.0
Physics debris collimators	[σ]	Н	TCL	Cu	12.0	12.0	12.0	12.0
Primary protection IR6	[σ]	Н	TCSG	C	8.5	7.5	7.5	7.5
Secondary protection IR6	[σ]	H	TCDQ	C	9.0	8.0	8.0	8.0
Primary cut IR3	[σ]	Н	TCP	С	12.0	12.0	12.0	5.7
Secondary cut IR3	[σ]	H	TCSG	C	15.6	15.6	15.6	6.7
Secondary cut IR3	[σ]	H	TCSM	W	15.6	15.6	15.6	6.7
Quartiary cut IR3	[σ]	H,V	TCLA	W	17.6	17.6	17.6	7.7
Local DS cleaning in IR1/5	[σ]	Н	TCLD	Cu/W	12.0	12.0	12.0	12.0
Local DS cleaning in IR2	[σ]	H	TCLD	Cu/W	12.0	12.0	12.0	12.0
Local DS cleaning in IR3	[σ]	H	TCLD	Cu/W	12.0	12.0	_	15.0
Local DS cleaning in IR7	[σ]	H	TCLD	Cu/W	12.0	12.0	15.0	-

Hi-Lumi scenarios

Parameter	Unit	Plane	Туре	Mat.	Case 1	Case 2	Case 3	Case 4
Primary cut IR7	[σ]	H,V,S	TCP	C	5.7	5.7	5.7	-
Secondary cut IR7	$[\sigma]$	H,V,S	TCSG	C	7.7	6.7	6.7	-
Secondary cut IR7	[σ]	H,V,S	TCSM	W	7.7	6.7	6.7	-
Quartiary cut IR7	[σ]	H,V	TCLA	W	9.7	9.0	9.0	-
Tertiary cut IR1/5	[σ]	H,V	TCT	W	10.4	9.5	9.5	9.5
Tertiary cut IR2/8	$[\sigma]$	H,V	TCT	W	12.0	12.0	12.0	12.0
Physics debris collimators	[σ]	H	TCL	Cu	12.0	12.0	12.0	12.0
Primary protection IR6	[σ]	Н	TCSG	C	8.5	7.5	7.5	7.5
Secondary protection IR6	[σ]	H	TCDQ	C	9.0	8.0	8.0	8.0
Primary cut IR3	[σ]	Н	TCP	С	12.0	12.0	12.0	5.7
Secondary cut IR3	[σ]	H	TCSG	C	15.6	15.6	15.6	6.7
Secondary cut IR3	[σ]	H	TCSM	W	15.6	15.6	15.6	6.7
Quartiary cut IR3	[σ]	H,V	TCLA	W	17.6	17.6	17.6	7.7
Local DS cleaning in IR1/5	[σ]	Н	TCLD	Cu/W	12.0	12.0	12.0	12.0
Local DS cleaning in IR2	[σ]	H	TCLD	Cu/W	12.0	12.0	12.0	12.0
Local DS cleaning in IR3	[σ]	H	TCLD	Cu/W	12.0	12.0	_	15.0
Local DS cleaning in IR7	[σ]	H	TCLD	Cu/W	12.0	12.0	15.0	-

Four scenarios:

Cases 1-2: Equivalent of previous scenarios, with possibly more metallic collimators in IR7 and DS collimators in IR1/2/5.

Case 3: Additional DS collimators in IR7?

Case 4: Combined momentum cleaning (possibly with metallic TCSGs)

Hi-Lumi scenarios

Parameter	Unit	Plane	Туре	Mat.	Case 1	Case 2	Case 3	Case 4
Primary cut IR7	[σ]	H,V,S	TCP	C	5.7	5.7	5.7	-
Secondary cut IR7	[σ]	H,V,S	TCSG	C	7.7	6.7	6.7	-
Secondary cut IR7	[σ]	H,V,S	TCSM	W	7.7	6.7	6.7	-
Quartiary cut IR7	[σ]	H,V	TCLA	W	9.7	9.0	9.0	-
Tertiary cut IR1/5	[σ]	H,V	TCT	W	10.4	9.5	9.5	9.5
Tertiary cut IR2/8	[σ]	H,V	TCT	W	12.0	12.0	12.0	12.0
Physics debris collimators	[σ]	Н	TCL	Cu	12.0	12.0	12.0	12.0
Primary protection IR6	[σ]	Н	TCSG	C	8.5	7.5	7.5	7.5
Secondary protection IR6	[σ]	H	TCDQ	C	9.0	8.0	8.0	8.0
Primary cut IR3	[σ]	Н	TCP	С	12.0	12.0	12.0	5.7
Secondary cut IR3	[σ]	H	TCSG	C	15.6	15.6	15.6	6.7
Secondary cut IR3	[σ]	H	TCSM	W	15.6	15.6	15.6	6.7
Quartiary cut IR3	[σ]	H,V	TCLA	W	17.6	17.6	17.6	7.7
Local DS cleaning in IR1/5	[σ]	Н	TCLD	Cu/W	12.0	12.0	12.0	12.0
Local DS cleaning in IR2	[σ]	H	TCLD	Cu/W	12.0	12.0	12.0	12.0
Local DS cleaning in IR3	[σ]	H	TCLD	Cu/W	12.0	12.0	_	15.0
Local DS cleaning in IR7	[σ]	H	TCLD	Cu/W	12.0	12.0	15.0	-

Four scenarios:

Cases 1-2: Equivalent of previous scenarios, with possibly more metallic collimators in IR7 and DS collimators in IR1/2/5.

Case 3: Additional DS collimators in IR7?

Case 4: Combined momentum cleaning (possibly with metallic TCSGs)

Complete re-design of the IRs in the pipeline, following ATS:

- New TCT materials, protection of Q4-Q6 - too early for precise figures

Different collimator setting scenarios were presented for the operational period after LS1, LS2 and LS3

- These preliminary estimates follow the present upgrade baseline
- First draft for discussion: obviously these figures are preliminary

If Different collimator setting scenarios were presented for the operational period after LS1, LS2 and LS3

- These preliminary estimates follow the present upgrade baseline
- First draft for discussion: obviously these figures are preliminary
- Established a baseline for discussion

- Additional discussions with the impedance team before massive calculations start

If Different collimator setting scenarios were presented for the operational period after LS1, LS2 and LS3

- These preliminary estimates follow the present upgrade baseline
- First draft for discussion: obviously these figures are preliminary
- Stablished a baseline for discussion
 - Additional discussions with the impedance team before massive calculations start
- Still many uncertainties on the final layouts
 - Do we really need local collimation in the DSs?
 - How many IRs can we equip in LS2 and LS3?
 - Will we need to add metallic collimators in IR7?

Ifferent collimator setting scenarios were presented for the operational period after LS1, LS2 and LS3

- These preliminary estimates follow the present upgrade baseline
- First draft for discussion: obviously these figures are preliminary
- Stablished a baseline for discussion
 - Additional discussions with the impedance team before massive calculations start
- Still many uncertainties on the final layouts
 - Do we really need local collimation in the DSs?
 - How many IRs can we equip in LS2 and LS3?
 - Will we need to add metallic collimators in IR7?

✓ Benefits from integrated BLM design is under evaluation (R. Bruce)

- What can we gain after LS1 with BPMs in IP6 and at the TCTs?
- Possible actions for LS2: BPM-collimators for the TCSG-H in IP7
- How many more collimators with BPMs could be added in LS2?