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High Energy Particle Accelerators Challenges 

• Beams circulating in last-generation accelerators have reached unprecedented energy and 
energy density. This trend is set to continue for future upgrades (e.g. HL-LHC) 

• Beam-induced accidents, beam losses and beam stability represent one of the most relevant 
issues for high power particle accelerators! 

• Collimators are one of the most critical systems when these issues are of concern 
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J. Wenninger 
(CERN) 
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LHC Collimation System 

• Several types of collimators for multi-stage cleaning (primary, secondary, tertiary units) at 
multiple LHC locations (100+ Collimators). 

• Active part of jaws made of various materials 
(C/C, Graphite, Copper, Tungsten Heavy Alloy...) 
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LHC Secondary Collimator (TCSG) Cutaway 

Actuation system 

Jaw Cooling system 

Vacuum Vessel 

Jaw Block 
(Carbon-Carbon) 

Jaw Assembly (1.2 m long) 
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LHC Collimator Requirements 

• Collimators are required to survive the beam-induced accidents to which they are inherently 
exposed given their vicinity to the beam  

• They must possess extremely accurate jaw flatness to maintain their beam cleaning efficiency 

• The collimation system is, by far, the highest contributor to accelerator impedance which may 
significantly limit machine performances: they must have lowest possible electrical resistivity 

• Their lifetime and efficiency should be conserved under long-term particle irradiation 

• No existing material can simultaneously meet all requirements for LHC Future Upgrades! 
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• Electrical Conductivity (γ) Maximize to limit Resistive-wall Impedance 

• Thermal Conductivity (λ) Maximize to maintain geometrical stability under steady-state losses 

• Coefficient of Thermal Expansion (α)  Minimize to increase resistance to thermal shock 
induced by accidental beam impact. 

• Melting/Degradation Temperature (TM) Maximize to withstand high temperatures reached in 
case of accidents.  

• Specific Heat (cp) Maximize to improve thermal shock resistance (lowers temperature 
increase) 

• Ultimate Strength (RM) Maximize to improve thermal shock resistance (particularly strain to 
rupture) 

• Density (ρ) Balance to limit peak energy deposition while maintaining adequate cleaning 
efficiency 

• Radiation-induced Damage. Minimize to improve component lifetime under long term particle 
irradiation 

Material Requirements 
N

ov
el

 M
at

er
ia

ls
 fo

r C
ol

lim
at

or
s 

Key properties must be optimized to meet requirements for Collimators in High 
Energy Particle Accelerators … 
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Novel Materials R&D Program 

• Extensive materials R&D program in collaboration with EU  
institutes and industries (EuCARD, EuCARD2, HiLumi) 

• Aim: explore composites combining the properties of graphite  
or diamond (low ρ, high λ, low α) with those of metals and  
transition metal-based ceramics  (high RM, good γ) 

• Materials investigated are Copper-Diamond (CuCD),  
Silver-Diamond (AgCD), Molybdenum-Copper-Diamond  
(MoCuCD), Molybdenum Carbide-Graphite (MoGr) 

• Production techniques include Rapid Hot Pressing,  
Liquid Phase Sintering and Liquid Infiltration  

• Most promising are CuCD and (mostly) MoGr 
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CuCD 

MoCuCD 

AgCD MoGr 
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Copper – Diamond 

• Developed by RHP-Technology (Austria) 
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Composition :  
• 60%v diamonds (90% 100 µm, 10% 45 µm) 

• 39%v Cu powder (45 µm) 

• 1%v B powder (5 µm) 

BC “bridge” stuck on CD 
surface. 
No CD graphitization 

• No diamond degradation  

• Thermal (~490 Wm-1K-1) and electrical 
conductivity (~12.6 MSm-1) 

• No direct interface between Cu and CD (lack of 
affinity). Partial bonding bridging assured by Boron 
Carbides limits mechanical strength (~120 MPa). 

• Cu low melting point (1083 °C)  

• CTE increases significantly with T due to high Cu 
content (from ~6 ppmK-1 at RT up to ~12 ppmK-1 
at  900 °C) 
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Molybdenum Carbide - Graphite 

• Co-developed by CERN and Brevetti Bizz (Italy) 

• Broad range of processes and compositions  
investigated (Molybdenum, Natural Graphite,  
Mesophase Pitch-based Carbon Fibers). 
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• Why Natural Graphite? 
• Low CTE (along basal plane) 
• High Thermal Conductivity (along basal plane) 
• Low Density 
• Very High Service Temperatures  
• High Shockwave Damping 
• Low cost 

• Why Mesophase Pitch-based Carbon Fibres? 
• Increase mechanical strength 
• Contribute to Thermal Conductivity (highly ordered 

structure) 

• Why Molybdenum? 
• Refractory metal 
• Density lower than Tungsten 
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Molybdenum Carbide – Graphite 

• Homogeneous distribution of graphite,  
fibers and fine MoC1-x grains 

• Excellent crystalline structure of graphite  
and Carbon Fibres with highly Oriented  
Graphene planes  

• Strong fiber-matrix bonding  
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Molybdenum Carbide - Graphite 
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ρ [g/cm3] 2.5 
α⊥ (RT to 1000° C) [10-6K-1] <1.8 

α// (RT to 1000° C) [10-6K-1] 12 
λ⊥ (RT) [W/mK] >770 
λ// (RT) [W/mK] 85 
γ⊥ (RT) [MS/m] 1÷18 
γ// (RT) [MS/m] 0.3 

E (Flexural) [GPa] 53 
RFl [MPa] 85 

Core:  
1.1 MS/m 

Mo Coating:  
18 MS/m 

Carbide layer: 1.5 
MS/m 

MoGr can be Mo-coated to increase surface conductivity 
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Figures of Merit 

• Several Figures of Merit were defined to compare and rank materials against most relevant 
requirements 

• Thermomechanical Robustness Index (TRI) is related to the ability of a material to withstand 
the impact of a short particle pulse.  

• In thermal shock problems, admissible strain is the  
most meaningful quantity 

• The term in Tm (melting temperature) provides an  
indication of the loss of strength at increasing temperature 

• Thermal Stability Index provides an indication of the ability of the material to maintain the 
geometrical stability of the component (e.g. Collimator jaw) 

• TSI is related to the inverse of the curvature of a long  
structure induced by a non uniform temperature distribution  
(for given steady-state particle losses). 

• Electrical conductivity. Resistive impedance is inversely  
proportional to electrical conductivity  highest electrical  
conductivity is sought for materials sitting closest to  
circulating beams! 
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Material Ranking 

• The higher the FOM, the better the material ... No one-fits-it-all material! 

• Carbon-based materials feature excellent TRI and TSI thanks to low-Z, low CTE, low density, 
high degradation temperature, high conductivity ….  

• Beryllium is outstanding under practically all points of view … unfortunately its use is severely 
limited by its toxicity. 

• Low electrical conductivity penalizes C-C and graphite if RF-impedance is an issue. In such 
a case, MoGr is the most promising compromise, particularly if coated with higher conductivity 
thin films. 

• Note poor performance of Tungsten Alloy, also due to the low melting temperature of the Ni-
Cu matrix required to reduce material brittleness … it is not pure W! 
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Material Beryllium Carbon- 
Carbon Graphite Molybdenum 

Graphite 
Copper-
Diamond Glidcop ® Molybdenum Tungsten Alloy 

(IT180) 

𝝆𝝆 [g/cm3] 1.84 1.65 1.9 2.50 5.4 8.90 10.22 18 

Z 4 6 6 ~6.5 ~11.4 ~29 42 ~70.8 

𝑇𝑇𝑚𝑚 [°C] 1273 3650 3650 2589 ~1083 1083 2623 ~1400 

TRI [‒] 790 1237 1101 634 6.8 5.3 6.4 0.5 

TSI [-] 17.1 44.6 10.1 69.4 9.9 0.8 0.7 0.1 

𝜸𝜸 [MSm-1] 23.3 ~0.14 ~0.07 ~1÷18 ~12.6 53.8 19.2 8.6 
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Preliminary Design of HL-LHC Collimator 
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Screwed back stiffener 

Bloc clamps 

MoGr or CuCD blocks 

Brazed cooling circuit 

Housing 

88
 

• A new modular design for HL-LHC Secondary Collimators is at an advanced stage of design 

• The concept allows to install 10 jaw inserts made of either CuCD or MoGr 

• The BPM pickup end seat is lengthened to reduce RF perturbations 

• A full-scale prototype should be installed in the LHC 
for MD as of end of 2015 / early 2016 
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Why Experimental Tests? 

Why Beam Impact Tests at CERN HiRadMat Facility? 

• With accidental beam impacts, one enters a relatively unknown territory, that of high power 
explosions and ballistics 

• The state-of-the-art wave propagation codes (Hydrocodes) required to deal with large 
density changes, phase transitions, fragmentations can be very reliable, provided the 
complex material models required are available and precise 

• Existing material constitutive models at extreme conditions are limited and mostly drawn from 
military research (classified). They are often unavailable for specific alloys and composites 

• Additional consequences on UHV, electronics, bellows, etc. cannot be easily anticipated by 
numerical simulations 

• Only ad-hoc material tests can provide the correct inputs for numerical analyses and 
validate/benchmark simulation results on simple specimens as well as on complex structures. 

• A dedicated facility has been designed and commissioned at CERN to test materials and 
systems under high intensity pulsed particle beams: HiRadMat (High Radiation to Materials) 

• Every new component to be installed in the LHC exposed to beam accidental impacts must be 
first qualified in HiRadMat 
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HRMT14 Experiment 

• HRMT14 (2012) Experiment Goals 

• Benchmark advanced numerical simulations and material constitutive models through 
extensive acquisition system 

• Characterize six existing and novel materials currently under development for future 
Collimators: Inermet180, Molybdenum, Glidcop, MoCuCD, CuCD, MoGr 

• Collect, mostly in real time,  experimental data from different acquisition systems (Strain 
Gauges, Laser Doppler Vibrometer, High Speed video Camera, Temperature and 
Vacuum probes) 
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Medium Intensity Tests: 
Sample: Ø 40 mm , L30 mm 

High Intensity Tests: 
Sample: half-moon; 
Beam Offset 2 mm 

Beam Parameters 

Beam energy 440 GeV 

Number of protons per 
bunch 1.1e11 

Bunch Spacing 25 ns 
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HRMT14 Experiment 
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Inermet180 (Tungsten Alloy) samples as seen from viewport and camera 
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High Intensity Tests: Comparison between numerical simulation (SPH) and experiment 

Beam 

Case Bunches p/bunch Total 
Intensity Beam Sigma Specimen 

Slot Velocity 

Simulation 60 1.5e11 9.0e12 p 2.5 mm 9 316 m/s 

Experiment 72 1.26e11 9.0e12 p 1.9 mm 8 (partly 9) ~275 m/s 

HRMT14 Experiment 
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Tungsten Alloy, 72 b Molybdenum, 72 & 144 b Glidcop, 72 b (2 x)  

Copper-Diamond 
144 b 

Molybdenum-Copper-Diamond 
144 b  

Molybdenum-Graphite (3 grades)  
144 b  
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HRMT23 Experiment 

• A new experiment (HRMT23) currently under manufacturing is planned for mid-2015 to 
simultaneously test 3 separate complete jaws extensively instrumented 

• Main goal is to qualify (or disqualify) jaws to be used in a full-scale HL-LHC prototype under 
highest and brightest 450 GeV beam available (e.g. 288 b x ~1.5e11 p/b) 
in view  
of LIU parameters 

• 2 HL-LHC jaws (inserts in CuCD and MoGr) 

• 1 LHC secondary collimator jaw (TCSP) …  

• System equipped with comprehensive set of strain gauges,  
and sensors for online acquisition, viewports for optical  
acquisition, LDV, etc. and fast dismounting system for  
glove box post-irradiation observations 
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Irradiation Tests at GSI 

• M-branch irradiation facility at GSI UNILAC 

• In-situ online and offline monitoring: 
camera, fast IR camera, SEM, XRD, LFA,  
nanoindentation and Raman spectroscopy  

• 3 irradiation campaigns completed, more to come .. 
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February-March 2014: 
• 238U irradiation: 1.14 GeV, 4x109 ions cm-2s-1  
• 208Bi irradiation: 1 GeV, 1.2x109 ions cm-2s-1,  
• Materials tested: CuCD, C-C, MoGr (non-annealed),  
• Fluence: up to 1x1014 ions cm-2  

July 2014: 
• 197Au irradiation: 945 MeV, ~1-2x109 ions cm-2s-1  
• C irradiation: 11.4 MeV/u, 5x109 ions cm-2s-1  
• CuCD, C-C (2x orient.), MoGr (low-temperature annealed), C fibres 
• Fluence: up to 1x1014 ions cm-2s-1  

October 2014 
• Sm irradiation: 360 MeV/u  
• Fluences: 1e11, 5e11, 1e12, 2e12): 

 

MoGr 

CuCD 

M.Tomut, GSI 
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• Analysis of experimental data is just starting 

• Preliminary results indicate a degradation of thermal diffusivity for both CuCD and MoGr (larger 
for MoGr) 

• Deformation under irradiation was also observed on MoGr transversal samples: this is likely due 
to release of internal residual strains. Subsequent annealing was seen to have beneficial effects. 
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Irradiation Tests at GSI 
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• Irradiation up to 200 MeV protons  (Glidcop , 
Mo, MoGr, CuCD) 

• Spallation neutrons from 112 MeV protons 
(CuCD, Graphite) 

Irradiation Tests at BNL 
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Tandem van de Graaff:  
Irradiation with 28 MeV protons for very 
localized damage (MoGr, CuCD, Glidcop) 
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Summary 

• Bringing LHC beyond nominal performances will require a new generation of collimators 
embarking advanced materials. 

• An ambitious R&D program at CERN is focusing on their development in the frame of EU-
sponsored collaborations and Partnership agreement. 

• A new generation of metal- and ceramic- matrix composites with diamond or carbon 
reinforcements is showing promising results, in particular Copper – Diamond (CuCD) and 
specially Molybdenum Carbide – Graphite (MoGr) 

• Outstanding properties were reached for MoGr produced by High Temperature Liquid Phase 
Sintering  (RT Thermal Conductivity 770+ Wm-1K-1 , CTE ~1÷2x10-6 K-1). 

• A full-scale prototype of a newly designed HL-LHC Collimator should be installed in the LHC 
in the coming months 

• Qualification of the design and validation of advanced materials constitutive models calls for ad-
hoc comprehensive tests to be carried out at CERN HiRadMat facility 

• An extensive campaign to study materials behavior under irradiation is underway at GSI, 
BNL and Kurchatov Institute. First results should become available soon. N
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• Irradiation campaign completed. Data analysis to start soon  

• X-ray beam from NSLS at Brookhaven National Laboratory has been used for phase and strain 
mapping of cold and irradiated collimator material samples.  

• 2 runs: April and September 2014 (“last light” before NSLS shutdown). 

• The new beamlines in NSLS II will start the operations in mid-2015 

X17A 
X-Ray ring 

(up to 3 GeV) 

UV/IR ring 
(up to 825 MeV) 

e-gun (100 keV) 

LINAC (up to 120 MeV) 

Booster (up to 750 MeV) 

X17B1 
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Material EOS Strength model Failure model 

Tungsten Tabular (SESAME) Johnson-Cook Plastic strain/ Hydro (Pmin) 

Copper OFE Polynomial Johnson-Cook Johnson-Cook 

Stainless steel AISI 316 Shock Johnson-Cook Plastic strain 

Water Shock - Hydro (Pmin) 

Jaw bloc (x5) 
(W(95%)-Ni(3.5%)-Cu(1.5%) 
partly modelled as pure W) 

Bloc Support 
(OFE-Copper) 

Water 

+/-10 mm 
through 5th 

axis 

Cooling Pipes 
(Cu(89%)-Ni(10%)-Fe(1%) modeled 

as OFE-Cu) 

Screw (x40) 
(Stainless Steel) 

Stiffener 
(Glidcop  

modeled as OFE-Cu) 

Accident Simulations on TCTA 
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HRMT14: Medium Intensity Tests 

  Extensive numerical analysis (Autodyn), based on FLUKA calculations to determine 
stress waves, strains and displacements. 

 Comparison of simulated Hoop and Longitudinal Strains and Radial velocity very 
well match measured values on sample outer surface. 

Inermet180 24 bunches 
Total intensity: 2.7e12 p 
σ ≅ 1.4 mm 
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MoGr, MoGrCF Post-irradiation 

 
MoGR H1_CENTER: 
144 bunches at 450 GeV,  
(1.95E13 protons), 
impact at 2 mm from the free surface. 

MoGRCF SSS (3.7 
g/cm3) 

MoGR (5.4 
g/cm3) 

Results: 
 Extended damage on 

denser MoGr (last 
samples), 

 No damage on 
MoGRCF samples, 

 No color variation! 
 LPS MoGRCF (2.7 

g/cm3) can only be 
better! 
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Inermet180 H6_CENTER: 
72b, 1.9 mm σ,  
9.05E12 Total Intensity 
 Extended damage (~1 cm)  
 No visible plastic deformation  
 Granular aspect of  damaged 

microstructure. 

Ø~ 9.2 mm 

Ø~10.5 mm 

W95-NiCu: Post-irradiation 
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