

SixTrack & Crab Cavities

A. Marsili R. Bruce, S. Redaelli, B. Yee Rendon

A. Marsili, BE-ABP-HSS, CERN

ColUSM #41, 25/07/2014

Introduction

- Adding Crab Cavities (CC) to SixTrack simulations
- Starting point: CC failures studies by B. Yee Rendon
 - HiLumi SLHC v3.1b with 3 CC on each side of the IPs (baseline is now 4)
 - Dynamic CC voltage: free turns, ramp up, plateau, ramp down
 > Not used. Here CC are on or off, no variation, no failure.
- Check of emittance growth: standard bunch over 1000 turns
- Evolution of halo distribution over 1000 turns
- p-p collision debris with CC on or off, and different TCL configurations.

- Introduction
- Changes in SixTrack code
- Single-pass effects of the Crab Cavities
 - Phase advance
 - Bunch distributions
- Multiturn effects of the Crab Cavities
 - Emittance
 - Halo distribution over 1000 turns
- Loss simulations
 - Debris inputs
 - Debris simulations
- A. Marsili, BE-ABP-HSS, CERN

Changes in SixTrack code

- SixTrack can't generate a "tilted" bunch => start simulation at IP2
- Need "checkturns" version to get particle distr. at different elements
 - $/! \setminus$ Not at all elements (file too big)
 - Element number is hard-coded and counted from start (IP2) !!!
 - Need to recompile every time, new version => should be changed
 - Change: element (or list of element) is an input?
- SixTrack bug: at the CC, all optics functions are 0 (investigating..)
- CC kicks only written in standard output (script to "catch" it)
- New version for debris: starting at IP1, all elements \rightarrow SixTrack_CCct_all
- Otherwise usual version from B. Yee Rendon.

Effect of the Crab Cavities at IP1

- SixTrack generated bunch, tracking starting at IP2
- Two cases: CC off / CC on, same random seed
- CC off = "flat" bunch, CC on = "tilted" bunch
- From checkturns.dat: longitudinal tilt of the bunch

Phase advance in IR5

- Phase advance nearly constant (3.6 deg.) from CC up to last element before IP, only changes (by pi/2) at IP
 => can't see the bunch "turn"
- Effect of CC can still be shown inside a bunch

Illustration of the kick of CC

- 1/ Particles coordinate is plotted versus position in bunch l, in 2D
- 2/ Colour shows particle displacement y at IP1
- 3/ Colour is kept for all plots

Illustration: kick of CC y' vs. l, painted by y at IP1, before CC

Illustration: kick of CC y' vs. l, painted by y at IP1, before CC

Effect of the Crab Cavities at IP5

• All 6 dimensions (x and y inverted for IP1), from checkturns

Important observations on checkturns.dat / dist0.dat / distn.dat

- The value of the orbit is subtracted from dist0.dat / distn.dat => < y'> = 0 at IP1, < x'> = 0 at IP5
- But in the usual referential, the particles' trajectory isn't "flat" but follows the orbit: position = 0 but kick = crossing angle, as seen in twiss file, and in checkturns file.
 => <y'> = Xing at IP1, <x'> = Xing at IP5
- Only the value of the orbit at the position of the considered element is subtracted from the transverse dimensions: 0 at the IP, not recalculated for each particle.
- The variations due to the position in the bunch l for each proton are not taken into account: $y \simeq l$. Xing

=> bunch is still tilted with or without orbit subtraction.

Effect of the Crab Cavities Introduction

- Calculating mean and standard dev. in y for a bunch around IP1 (vertical crossing angle)
- Same for all other coordinates, and for IR5
- Mean follows crossing angle, std. dev. follows the beta function

Effect of the Crab Cavities

- Std. dev of y is different at the IP: from 1 $\sigma_{_{\beta}}$ to ~2.3 $\sigma_{_{\beta}}$
- Change is only really noticeable at the IP (phase advance)
- < dp/p > changes slightly at the CC (~452 eV)
- Now on to many turns...

A. Marsili, BE-ABP-HSS, CERN

LHC Collimation

Proiect

CERN

Effect of the Crab Cavities over 1000 turns 6D bunch, observed at TCP IR7

• No emittance growth: after 1000 turns, the bunch size is conserved, its standard deviation is still 1 $\sigma_{_{\beta}}$

- Illustrating the relation between <l> and <dp/p> over many turns
- Effect of the RF cavities
- Same thing can be shown in the phase spaces, with higher frequency
- Size in phase space stays constant

Effect of the Crab Cavities over 1000 turns Halo, l and dp/p

• Average of *l* distribution increases with time...

Loss simulations: ongoing work

- Regenerate input for debris, taking CC effect in to account
 - Bunch tilt in crossing angle plane
 - Gaussian distribution in l
- BYR studies performed with SLHC v3.1b
 - Case with CC off give exactly the same results (tracks2.dat) as the case without any CC for the same input and same random seed
- Mad-X script to install CC available \rightarrow do it for HL LHC v1
- Debris loss maps (single pass)
- Halo loss maps: issues with recentering (start from IP2)

Debris Initial distribution

- 6D beam distribution + effect of collisions + effect of CC
- 1st order approximation: adding the extra tilt to the y distribution: $(y_0, l) \rightarrow (y_0 + l*sin \theta, l)$
- Distribution of y/l from checkturns is centred around crossing angle •

Comparison of checkturns dists. at IP1 with manually-generated initial distributions

- Difference in the y distribution as shown in previous slide
- $3.2 \ \mu m$ difference in numerical standard deviation (0.37 sig)
- First order not sufficient?

Debris simulations: no TCL

A. Marsili, BE-ABP-HSS, CERN

ColUSM#41, 25/07/2014

Debris simulation: TCL4

A. Marsili, BE-ABP-HSS, CERN

ColUSM#41, 25/07/2014

- Not much difference observed
- Losses not clearly in one plane \rightarrow not all stopped by collimator
- Collimator at 15 sigma, could be tighter.
- Check trajectories

Conclusion

- Effect of CC in SixTrack studied in depth and is consistent
- Setup ready:
 - Debris with CC generated
 - Emittance is constant
 - Halo is fine over 200 turns (*l* could be an issue)
- First (slow...) series of simulations revealed small issues:
 - Possible issue with orbit subtraction where relevant
 - Recentering for simulations starting in IP2
 - Small effect of TCL4
- More simulations needed

