SixTrack \&

Crab Cavities

A. Marsili
R. Bruce, S. Redaelli, B. Yee Rendon

Introduction

- Adding Crab Cavities (CC) to SixTrack simulations
- Starting point: CC failures studies by B. Yee Rendon
- HiLumi SLHC v3.1b with 3 CC on each side of the IPs (baseline is now 4)
- Dynamic CC voltage: free turns, ramp up, plateau, ramp down $=>$ Not used. Here CC are on or off, no variation, no failure.
- Check of emittance growth: standard bunch over 1000 turns
- Evolution of halo distribution over 1000 turns
- p-p collision debris with CC on or off, and different TCL configurations.
- Introduction
- Changes in SixTrack code
- Single-pass effects of the Crab Cavities
- Phase advance
- Bunch distributions
- Multiturn effects of the Crab Cavities
- Emittance
- Halo distribution over 1000 turns
- Loss simulations
- Debris inputs
- Debris simulations

Changes in SixTrack code

- SixTrack can't generate a "tilted" bunch $=>$ start simulation at IP2
- Need "checkturns" version to get particle distr. at different elements
- $/!\backslash$ Not at all elements (file too big)
- Element number is hard-coded and counted from start (IP2) !!!
- Need to recompile every time, new version $=>$ should be changed
- Change: element (or list of element) is an input?
- SixTrack bug: at the CC, all optics functions are 0 (investigating..)
- CC kicks only written in standard output (script to "catch" it)
- New version for debris: starting at IP1, all elements \rightarrow SixTrack_CCct_all
- Otherwise usual version from B. Yee Rendon.

Effect of the Crab Cavities at IP1

- SixTrack - generated bunch, tracking starting at IP2
- Two cases: CC off / CC on, same random seed
- CC off $=>$ " flat" bunch, CC on $=>$ "tilted" bunch
- From checkturns.dat: longitudinal tilt of the bunch

Phase advance in IR5

- Phase advance nearly constant (3.6 deg.) from CC up to last element before IP, only changes (by pi/2) at IP
$=>$ can't see the bunch "turn"
- Effect of CC can still be shown inside a bunch

Illustration of the kick of CC

1/ Particles coordinate is plotted versus position in bunch l, in 2D
2/ Colour shows particle displacement y at IP1

3/ Colour is kept for all plots

A. Marsili, BE-ABP-HSS, CERN

Effect of the Crab Cavities at IP5

- All 6 dimensions (x and y inverted for IP1), from checkturns

x^{\prime} centred around crossing angle checkturns.dat / dist0.dat / distn.dat
- The value of the orbit is subtracted from dist0.dat / distn.dat $=>\quad\left\langle y^{\prime}\right\rangle=0$ at IP1, $\left\langle x^{\prime}\right\rangle=0$ at IP5
- But in the usual referential, the particles' trajectory isn't "flat" but follows the orbit: position $=0$ but kick $=$ crossing angle, as seen in twiss file, and in checkturns file.
$=\rangle\left\langle y^{\prime}\right\rangle=$ Xing at IP1, $\left\langle x^{\prime}\right\rangle=$ Xing at IP5
- Only the value of the orbit at the position of the considered element is subtracted from the transverse dimensions: 0 at the IP, not recalculated for each particle.
- The variations due to the position in the bunch l for each proton are not taken into account: $y \simeq l$. Xing
$=>$ bunch is still tilted with or without orbit subtraction.

Effect of the Crab Cavities

Introduction

Effect of the Crab Cavities

- Std. dev of y is different at the IP: from $1 \sigma_{\beta}$ to $\sim 2.3 \sigma_{\beta}$
- Change is only really noticeable at the IP (phase advance)
- $<d p / p\rangle$ changes slightly at the CC $(\sim 452 \mathrm{eV})$
- Now on to many turns...

Std. dev. of the bunch at TCP vs. number of turns

Particle distribution in x after 1000 turns in $\left[\sigma_{\beta}\right]$

- No emittance growth: after 1000 turns, the bunch size is conserved, its standard deviation is still $1 \sigma_{\beta}$

Effect of the Crab Cavities over 1000 turns Nominal bunch oscillations

- Illustrating the relation between $<l>$ and $<d p / p\rangle$ over many turns
- Effect of the RF cavities
- Same thing can be shown in the phase spaces, with higher frequency
- Size in phase space stays constant

Effect of the Crab Cavities over 1000 turns 5σ halo distribution, at TCP

Effect of the Crab Cavities over 1000 turns Halo, l and $d p / p$

- Average of l distribution increases with time...

Loss simulations:

ongoing work

- Regenerate input for debris, taking CC effect in to account
- Bunch tilt in crossing angle plane
- Gaussian distribution in l
- BYR studies performed with SLHC v3.1b
- Case with CC off give exactly the same results (tracks2.dat) as the case without any CC for the same input and same random seed
- Mad-X script to install CC available \rightarrow do it for HL LHC v1
- Debris loss maps (single pass)
- Halo loss maps: issues with recentering (start from IP2)

Debris

Initial distribution

- 6 D beam distribution + effect of collisions + effect of CC
- 1st order approximation: adding the extra tilt to the y distribution: $\left(y_{0}, l\right) \rightarrow\left(y_{0}+l^{*} \sin \theta, l\right)$
- Distribution of y / l from checkturns is centred around crossing angle

Comparison of checkturns dists. at IP1 with manually-generated initial distributions

Comparison of checkturns dists. at IP1 with manually-generated initial distributions

- Difference in the y distribution as shown in previous slide
- $3.2 \mu \mathrm{~m}$ difference in numerical standard deviation (0.37 sig)
- First order not sufficient?

Debris simulations: no TCL

lost particles
SLHCV31 CCon noTCL

lost particles
SLHCV31 CCon TCL4

- Not much difference observed
- Losses not clearly in one plane \rightarrow not all stopped by collimator
- Collimator at 15 sigma, could be tighter.
- Check trajectories
- Effect of CC in SixTrack studied in depth and is consistent
- Setup ready:
- Debris with CC generated
- Emittance is constant
- Halo is fine over 200 turns (l could be an issue)
- First (slow...) series of simulations revealed small issues:
- Possible issue with orbit subtraction where relevant
- Recentering for simulations starting in IP2
- Small effect of TCL4
- More simulations needed

