

Error models

Outline

- Introduction
- Presentation of the different error models
 - Independent effects on simulations
- Combined error models
 - Combined effects on simulations
 - Emphasis on TCLD IR7
 - Non-flatness
- Conclusion

Introduction

- Collimation cleaning simulations of ATS, Beam 1
- Loss clusters downstream IR7
- Can be cured by 11 T dipoles + TCLD collimators
- Add error models of collimator alignment to simulations...

Error models in simulation (from C. Bracco's PhD thesis)

- Gap: error on the size of the collimator gap
 - Standard deviation: 0.1σ
- Offset: error on the position of the beam centre
 - Standard deviation: $50 \ \mu m$
- Slices: error on the flatness of the jaw
 - 2nd order polynomial: $4 \cdot 10^{-4} \left(\frac{s^2}{l} s\right)$
 - fitted linearly by 4 slices
- Tilt: error on the angle between jaw and beam
 - Standard deviation: 200 µrad

Impacts on the left jaw of the TCP Setting: 6 σ

LHC Collimation Project

First impacts on TCP.C6L7.B1

Distributions of losses per turn

Longitudinal distribution of particles absorbed in TCP.C6L7.B1

Loss maps of IR7

Impacts on the TCP (vertical plane)

A. Marsili, CERN

10

0.0

Gap

Statistics

• Error on gap = bigger collimator setting

Slices

Tilt

• Offset = favouring one jaw

Offset

• Slices and tilt have similar effect: less material

- Offset gives best cleaning
- Tilt gives worst cleaning
- Slices = higher order of tilt (better cleaning)

Realistic error models for LHC collimators

TCLD Other collimators

1

•	Open, or set at 15 σ	Type	Setting
•	Wangt as ge gitte at i and the second and multiple	TCP IR7	6
	the no-error case (10 and 15 σ)	TCSG IR7	7
		TCLA IR7	10
•	Reality should be in between two cases	TCP IR3	12
•	Simulations: 100 cm jaws	TCSG IR3	15.6
		TCLA IR3	17.6
	- current model is 80 cm	TCL	10
	- both values give similar results (FLUKA)	TCSTCDQ	7.5
		TCDQ	8
•	Global inefficiency strongly dependent	TCT $IR1/5$	8.3
	on the presence of the TCLD	TCT $IR2/8$	12.0

Combined error models

- Based on experimental data (C. Bracco, PhD thesis)
- Error on flatness:
 - Mostly deformed towards the beam (2/3)
 - Average absolute flatness: $40.3 \pm 22.2 \ \mu m$
 - Modelled as parabola with maximum: 10 ppm (worst case scenario)
- Error on gap: 0.1σ
- Offset (beam centre): $50 \ \mu m$
- Jaw angle: 200 pad
- Different seeds for the random errors

No error, Horizontal B1 (for reference)

Result example: B1 horizontal, no TCRYO

CERN

Loss maps IR7, no TCRYO with and without errors

Loss clusters under 1e-5

Loss clusters above 1e-5

Cleaning deteriorates with error models

Loss maps for four cases (same seed)

Even with errors and at 15σ , the TCLD provide a good protection

• Global inefficiency

	Hor, no TCRYO	Ver, no TCRYO	Hor, TCRYO	Ver, TCRYO
Mean	6.756e-4	5.086e-4	1.753e-5	1.441e-5
Std. Dev.	1.659e-4	1.065e-4	1.144e-5	4.497e-6
Error	6.27e-5	4.025e-5	4.326e-6	1.7e-6

Observations on non-flatness

- 2^{nd} order polynomial, two options: towards the beam, or away.
- Half of simulations in one case, half in the other
- Same maximum deformation
- On average, the deformation towards the beam provides a better cleaning efficiency (more material than other case)

Conclusions

- Error models deteriorate cleaning efficiency
- Worst case situation: all error models + setting at 15 σ
- Even in worst case, global efficiency improves by factor 30 to 45
- Local efficiency downstream IR7 improves even more (x100)
- Error models deteriorate statistics (equivalent different collimator / halo setting)
- Compensate? (alignent)
- 310 000 jobs, 2e12 particles, 800 years of CPU

Gap

- Tracked: 6 400 000
- Lost:

- Offset
- Tracked: 6 400 000
- $3\ 947\ 114\ (61.67\ \%)$ Lost: $6\ 150\ 481\ (96.10\ \%)$

Slices

- Tracked: 6 393 600
- 5 640 978 (88.23 %) Lost: Lost:

Tilt

- Tracked: 6 329 600
- 5 727 363 (90.48 %)

All results ratio lost/sent

Horizontal

- B1H TCRYO 1
- B1H TCRYO 28
- B1H TCRYO 45
- B1H TCRYO 604
- B1H TCRYO 71
- B1H TCRYO 72
- B1H TCRYO 864
- 0.998737560012 • B1H noTCRYO 1 0.94838546875

0.948362313675

0.387117461746

0.858202029936

0.991569156916

0.994606975843

0.101252688575

0.858190458617

0.991544090068

0.994557244688

- B1H noTCRYO 28 0.387040431975
- B1H noTCRYO 45
- B1H noTCRYO 604
- B1H noTCRYO 71
- B1H noTCRYO 72 0.10121171875
- B1H noTCRYO 864 0.99874

•	$B1V_{-}$	_TCRYO_	_1

- B1V TCRYO 28
- B1V TCRYO 45
- B1V TCRYO 604
- B1V TCRYO 71
- B1V TCRYO 72
- B1V TCRYO 864
- B1V noTCRYO 1
- B1V noTCRYO 28
- B1V_noTCRYO 45
- B1V noTCRYO 604
- B1V noTCRYO 71
- B1V noTCRYO 71
- B1V noTCRYO 864

Vertical

- 0.99958140625 0.409967397023 0.995526890262 0.23448292042 0.994606975842 0.991525985394 0.96894203125 0.999586479796
- 0.410120500401
- 0.995600456478
- 0.234395476941
- 0.999950019664
- 0.991446644664
- 0.968934310905

All results Global inefficiency

Horizontal

- B1H_TCRYO_1
- B1H_TCRYO_28
- B1H_TCRYO_45
- B1H_TCRYO_604
- B1H_TCRYO_71
- B1H_TCRYO_72
- B1H_TCRYO_864
- B1H_noTCRYO_1
- B1H_noTCRYO_28
- B1H_noTCRYO_45
- B1H_noTCRYO_604
- B1H_noTCRYO_71
- B1H_noTCRYO_72
- B1H_noTCRYO_864

9.47893216183e-06 1.37108902765e-05 8.64301518656e-06 3.55083483215e-05

3.52735023308e-05

1.21100855214e-05

- 7.98048255631e-06
- 0.00067203027777
 - 0.00092473932545
 - 0.000803848992371
 - 0.00076864350904
- 0.000661103169435
 - 0.000410817789955
 - 0.000488040197733

Vertical

- B1V_TCRYO_1
- B1V_TCRYO_28
- B1V_TCRYO_45
- B1V_TCRYO_604
- B1V_TCRYO_71
- B1V_TCRYO_72
- B1V_TCRYO_864
- B1V_noTCRYO_1
- B1V_noTCRYO_28
- B1V_noTCRYO_45
- B1V_noTCRYO_604
- B1V_noTCRYO_71
- B1V_noTCRYO_72
- B1V_noTCRYO_864

- 1.67260310504e-05
- 1.03132477105e-05
- $2.18342806374 \mathrm{e}{\text{-}}05$
- 1.9344153163e-05
- 1.0161609921e-05
- $1.21390772504\mathrm{e}{\text{-}}05$
- 1.03206413634 e-05
- 0.000483655358329 0.000679880499836 0.000638847020963 0.000376926494664 0.000388870117545 0.000510983787218 0.000481025404114