Update on TAN design and energy deposition in the Matching Section of the HL-LHC IR1/5

L.S. Esposito, F. Cerutti, EN-STI-EET R. Alemany Fernandez, BE-OP-LHC R. De Maria, BE-ABP-LCU

Objective

- HL-LHC peak power sensitivity in the Matching Section to:
- optics round/flat/sround optics
- horizontal/vertical crossing scheme
- replace Q5 by MQYY (HL-LHC Q4)
- implement shielding in D2, Q4, Q5 (tungsten absorbers)
- TAN aperture (reducing)
- TAN position (toward D2)

Many variables with strong interplay among them

HL-LHC beam-line model

TAN D2 Q4

- D2, Q4 and their associated correctors are new magnets
(implementation according to specs available on WP3 site)
- Q5 is a MQY (present Q4)
- Q6 and Q7 are present magnets
- Crab cavities

Matching Section elements

New elements: 2-in-1

| | HLLLC V1.0 | | | | Nominal V6.5 | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Element | Leng
 th
 $[\mathrm{m}]$ | Coil
 Ap.
 $[\mathrm{mm}]$ | BS Ap. [mm] | Sep.
 $[\mathrm{mm}]$ | Shift
 $[\mathrm{m}]$ | Len
 gth
 $[\mathrm{m}]$ | Coil
 Ap.
 $[\mathrm{mm}]$ | BS Ap. [mm] | Sep. [mm] |
| TAN | 3.7 | n / a | Ellipse H oriented
 $(41,37)$ | 145 | -15 | 3.7 | n / a | Round: 26 | 160 |
| D2 | 10 | 105 | RE H oriented
 $(41,36)$ | 186 | -15 | 9.45 | 80 | RE H oriented:
 $(31.3,26.4)$ | 188 |
| MCBRD | 1.5 h
 1.5 v | | As D2 | 194 | -15 | Not present | | | |
| CRABS | 3 x
 2.6 | 80 | n / a | 194 | n / a | Not present | | | |
| Q4 and
 MCBY | 3.5 | 90 | RE pol. Oriented
 $(32,37)$ | 194 | 0.05 | 3.4 | 70 | RE H oriented
 $(24,28.9)$ | 194 |
| Q5 | 4.8 | 70 | RE Q4 polarity or.
 $(24,28.9)$ | 194 | 11 | 4.8 | 56 | RE pol.
 oriented | 194 |

Q6-Q7 as in the present LHC machine
Qigh
Luminos
LHC
slide from R. De Maria, 2nd Joint HiLumi LHC-LARP Annual Meeting

Matching Section elements

New elements: 2-in-1

	HLLHC V1.0					Details about FLUKA implementation
Element	Leng th [m]	Coil Ap.	BS Ap. [mm]	Sep. [mm]	Shift [m]	
TAN	3.7	n/a	Ellipse H oriented $(41,37)$	145	-15	truncated cone: see next slides
D2	10	105	RE H oriented $(41,36)$	186	-15	4 mm CB with $\mathrm{IR}=46.5 \mathrm{~mm} ; 1 \mathrm{~mm} \mathrm{BS}$; 4.5 mm clearance BS-CB
MCBRD	$\begin{aligned} & 1.5 \mathrm{~h} \\ & 1.5 \mathrm{v} \end{aligned}$		As D2	194	-15	as D2
CRABS	$\begin{aligned} & 3 x \\ & 2.6 \end{aligned}$	80	n/a	194	n/a	aperture 84 mm (private communication from R. Calaga)
Q4 and MCBY	3.5	90	RE pol. Oriented $(32,37)$	194	0.05	4 mm CB with $\mathrm{IR}=39 \mathrm{~mm} ; 1 \mathrm{~mm}$ BS 1 mm clearance BS-CB
Q5	4.8	70	RE Q4 polarity or. $(24,28.9)$	194	11	Present Q4 (MQY): 1.76 mm CB with $\mathrm{IR}=31.49 \mathrm{~mm}$ 0.675 mm BS (25.225/30.025)

Q6-Q7 as in the present LHC machine
slide from R. De Maria, 2nd Joint HiLumi LHC-LARP Annual Meeting

Matching Section elements

New elements: 2-in-1

	HLLHC V1.0					Details about FLUKA implementation
Element	$\begin{aligned} & \text { Leng } \\ & \text { th } \\ & {[\mathrm{m}]} \end{aligned}$	Coil Ap. [mm]	BS Ap. [mm]	Sep. [mm]	Shift [m]	
TAN	3.7	n/a	Ellipse H oriented $(41,37)$	145	-15	truncated cone: see next slides
D2	10	105	RE H oriented $(41,36)$	186	-15	4 mm CB with $\mathrm{IR}=46.5 \mathrm{~mm} ; 1 \mathrm{~mm} \mathrm{BS}$; 4.5 mm clearance BS-CB
MCBRD	$\begin{aligned} & 1.5 \mathrm{~h} \\ & 1.5 \mathrm{v} \end{aligned}$		As D2	194	-15	as D2
CRABS	$\begin{aligned} & 3 x \\ & 2.6 \end{aligned}$	80	n/a	194	n/a	aperture 84 mm (private communication from R. Calaga)
Q4 and MCBY	3.5	90	RE pol. Oriented $(32,37)$	194	0.05	4 mm CB with $\mathrm{IR}=39 \mathrm{~mm} ; 1 \mathrm{~mm} \mathrm{BS}$ 1 mm clearance BS-CB
Q5	4.8	70	RE Q4 polarity or. $(24,28.9)$	194	11	use a single MQYY (HL-LHC Q4)

Q6-Q7 as in the present LHC machine
slide from R. De Maria, 2nd Joint HiLumi LHC-LARP Annual Meeting

HL-LHC IR optics features

name	β_{\times}^{*} $[\mathrm{~m}]$	$\beta_{\\|}^{*}$ $[\mathrm{~m}]$	θ_{\times} $[\mu \mathrm{rad}]$	$\Delta_{\\|}$ $[\mathrm{mm}]$	$\times_{\text {plane }}$ $\mathrm{IP} 1 / 5$
injection: $\beta_{2,8}^{*}=10 \mathrm{~m}, \theta_{\times 2,8}=340 \mu \mathrm{rad}$					
inj	6.0	6.0	490	4	any
presqueeze	3.0	3.0	590	1.5	any
presqueeze	0.44	0.44	360	1.5	any
Telescopic squeeze					
round	0.15	0.15	590	1.5	any
sround	0.10	0.10	720	1.5	any
flat	0.075	0.30	550	1.5	$\mathrm{~V} / \mathrm{H}$
sflat	0.050	0.20	670	1.5	$\mathrm{~V} / \mathrm{H}$
flathv	0.075	0.30	550	1.5	H / V
sflathv	0.050	0.20	670	1.5	H / V
ion, $\beta_{2,8}^{*}=50 \mathrm{~cm}$					
ion	0.44	0.44	360	1.5	any

HL-LHC IR optics features

name	β_{\times}^{*} $[\mathrm{~m}]$	$\beta_{\\|}^{*}$ $[\mathrm{~m}]$	θ_{\times} $[\mu \mathrm{rad}]$	$\Delta_{\\|}$ $[\mathrm{mm}]$	$\times_{\text {plane }}$ $\mathrm{IP} / / 5$
injection: $\beta_{2,8}^{*}=10 \mathrm{~m}, \theta_{\times 2,8}=340 \mu \mathrm{rad}$					
inj	6.0	6.0	490	4	any
ph phase advances, $\beta_{8}^{*}=3 \mathrm{~m}$					
presqueeze	3.0	3.0	590	1.5	any
presqueeze	0.44	0.44	360	1.5	any
Telescopic squeeze					
round	0.15	0.15	590	1.5	any
sround	0.10	0.10	720	1.5	any
flat	0.075	0.30	550	1.5	$\mathrm{~V} / \mathrm{H}$
sflat	0.050	0.20	670	1.5	$\mathrm{~V} / \mathrm{H}$
flathv	0.075	0.30	550	1.5	H / V
sflathv	0.050	0.20	670	1.5	H / V
ion, $\beta_{2,8}^{*}=50 \mathrm{~cm}$					
ion	0.44	0.44	360	1.5	any

Highlighted optics have been used to define TAN aperture

TAN aperture

Beam envelope

Beam envelope

The following criterion was used to optimize the aperture:

- TAN should not represent a bottleneck in the beam performance

1. Assumed emittance $3.75 \mu \mathrm{~m}$
2. 14σ aperture (slightly larger than the one in the Inner Triplet)
3. Maximum beam envelop determined by round and flat optics
N.B. Here TAN aperture maximized, there are margins to reduce it (ideally improving the protection in both directions)

TAN model

$\mathrm{s}[\mathrm{m}] /$ half-sep[mm]/radius[mm]

126.9/74/38

Adapted by present TAN FLUKA model
Beam pipes implemented as diverging truncated cones

IP1	n1 TANL37	n1 TANL38	n1 TANR38	n1 TANR37
ROUND	16.92	16.40	18.43	18.7
FLAT	15.26	15.36	13.18	13.37
IP5	$n 1$ TANL37	n1 TANL38	n1 TANR38	n1 TANR37
ROUND	18.65	18.4	16.47	16.99
FLAT	13.44	13.25	15.42	15.28
Q2 R	12.19	Q2 F	11.92	

My numbers to compared with:
Round $\boldsymbol{>} 13.88$
Flat $\boldsymbol{>} 11.13$
Ellipse $\rightarrow \mathrm{Rx}=37 \mathrm{~mm}, \mathrm{Ry}=33.3 \mathrm{~mm}$ Beam pipe separation cte $=145 \mathrm{~mm}$

TAN model (+4 m toward D2)

$\mathrm{s}[\mathrm{m}] /$ half-sep [mm]/radius [mm]

130.9/79.7/36.1

$2 \div 3 \mathrm{~mm}$ pipe radius decrease
$5 \div 6 \mathrm{~mm}$ increase in the beam pipe half-separation

TCL4 integration issue

Not enough space to install the tank between the two beam pipes
Only the jaws have been inserted in the model ($<10 \%$ of total power)

Matching Section peak power

Spanning the range of TCL performance: no TCL vs TCL everywhere

flat/sround vs round optics

Reducing TAN aperture, Q5 as Q4

Further reducing TAN aperture

and moving the TAN

Beam screen with tungsten absorbers

Beam screen with tungsten absorbers

covering $\pm 30^{\circ}$ from the mid-planes
L.S. Esposito, HiLumi WP2-WP5 Meeting, 26 September 2013

Beam screen with tungsten absorbers

no aperture loss

covering $\pm 30^{\circ}$ from the mid-planes
L.S. Esposito, HiLumi WP2-WP5 Meeting, 26 September 2013

Effectiveness of the shielding

Peak reduced by $\sim 30 \%$ on the Q4, but really limited on D2 (see next slide)

D2-Q4 region

Peak reduction at 0 degree

A look at IR1

No TCL

IR1 with TCL5/6/7 and Q5 as Q4

No TCL4
Q6 still critical from the protection point of view

Final remarks

- HL-LHC layout is challenging in the protection of the Matching Section elements
(putting aside the $5 \times$ in luminosity, one should bear in mind that the beam is larger and that the separation between the beam trajectory and the neutral cone is strongly reduced \S)
- Positive outcome
- Q5 as MQYY (HL-LHC Q4) reduces the peak power at about $1 \mathrm{~mW} / \mathrm{cm}^{3} @ 5 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
- but what about Q6 ($\left.\sim 10 \mathrm{~mW} / \mathrm{cm}^{3} @ 5 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right)$?
- TAN aperture/move and beam screen shielding turn out to have a limited impact
- power peak are located at the IP-side of the MS magnets
- leakage between TAN and TCL4

Reserve slides

Basic parameters

- 85 mb proton-proton cross-section at $\sqrt{\mathrm{s}}=14 \mathrm{TeV}$
- Normalization:
- dose at $3000 \mathrm{fb}^{-1}$ and
- power density at $L=5 \times L_{0}=5 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
- DPMJET III as event generator
- Binning scoring: $\Delta \mathrm{z} \simeq 10 \mathrm{~cm}, \Delta \phi=2^{0}$
- $\Delta \mathrm{r} \simeq 3 \mathrm{~mm}$ for dose scoring
- Entire radial cable for power scoring

IP1	n 1 TANL35	n 1 TANL36	n 1 TANR36	n 1 TANR35
FLAT	14.36	14.50	12.45	12.60

My numbers to compared with:
Round $\boldsymbol{>} 13.88$
Flat $\boldsymbol{>} 11.13$

IP5	n1 TANL35	n1 TANL36	n1 TANR36	n1 TANR35
FLAT	12.67	12.51	14.54	14.38
Q2 ROU	12.19	Q2 FLAT	11.92	

Ellipse $\rightarrow \mathrm{Rx}=37 \mathrm{~mm}, \mathrm{Ry}=33.3 \mathrm{~mm}$ Beam pipe separation cte $=145 \mathrm{~mm}$

R. Alemany Fernandez

HL-LHC vs LHC

TAN aperture increase seems to be "reasonable" if compared to β increase
Lost the beam separation between the proton beam trajectory and the neutral cone coming from collision at IP

Comparison with LHC (no TCL)

At same luminosity, there is a factor $5 \div 50$ increase in the D2, Q4 and Q6 peak loads

Q4 correctors are not shown for LHC case

Comparison with LHC (with TCL)

TCL half-gap set at 10σ
peak power profile $@ \mathbf{L}=5 \times 10^{54} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

- For the present LHC, TCL4 is sufficient to keep peak load $<1 \mathrm{~mW} / \mathrm{cm}^{3}$
- For the HL case, even in the presence of a TCL in front of each magnet, the energy deposition results in peak loads in the range of $1 \div 10 \mathrm{~mW} / \mathrm{cm}^{3}$
- TCL less effective in limiting magnet energy deposition because of the larger aperture (at a fixed number of $\boldsymbol{\sigma}$)

Peak dose

- As for long term damage, $\sim 100 \mathrm{MGy} / 3000 \mathrm{fb}^{-1}(!)$ would be reached on the Q5 and Q6

Looking at beam 2 bore

- Beam 2 bore is also resulting in high energy deposition.
- TCTs will serve also as "TCL" but it depends on where they are located

Total power

Power [W]	TAN	TCL4	D2	Q4	TCL5	Q5	TCL6	Q6	TCL7	Q7
LHC, hor, TCL4 (10 $\mathbf{0}^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$	205	35		0.3	-	0.2	-	<0.1	-	<0.1
$\begin{aligned} & \text { HL round, vert, } \\ & \text { no } \mathrm{TCL}, \\ & \text { (a) } 5 \times \mathbf{1 0}^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \end{aligned}$	1210	-	60	20	-	40	-	45	-	20
$\begin{gathered} \hline \text { HL round, hor, } \\ \text { no TCL, } \\ \text { @ } 5 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \end{gathered}$	930	-	145	35	-	80	-	90	-	55
$\begin{aligned} & \text { HL round, hor, } \\ & \text { all TCLs } \\ & \text { (} 5 \times \mathbf{1 0}^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \end{aligned}$	935	245	45	15	115	15	40	9	6	3
$\begin{gathered} \text { HL flat, hor, } \\ \text { all TCLs } \\ @ \mathbf{5 \times 1 0 ^ { 3 4 } \mathrm { cm } ^ { - 2 } \mathrm { s } ^ { - 1 }} \\ \hline \end{gathered}$				9	80	13	35	8	4	3

- TAN will absorb even 1.2 kW (less shielding from the upstream elements)
- Looking at D2 (as example), the increase of heat load does not scale with the luminosity

HL-LHC IR5 loss map

negatively charged particles loss map [GeV/collision] negatively charged particles loss map [GeV/collision]

