Ion impact distributions of DS collimators in IP2

Michaela Schaumann

02/05/2013

Motivation

Installation of collimators in the Dispersion Suppressor (DS) to both sides of ALICE (IP2) to intercept secondary beams from bound-free pair production (BFPP) and electromagnetic dissociation (EMD) .

General Procedure

Editing the sequence and add DS collimator in IP2.
$+$
Calculating the transfer matrix form IP to front of collimator with MADX.

Generation of the distribution at the IP.

Tracking of distribution to front of collimator.

Calculate σ-Matrix at IP.

Tracking of σ-Matrix to front of collimator.

Convert MADX output into desired format for FLUKA.

Editing the sequence

Editing the sequence - Influence on Optics

Without taking magnet errors into account the changes in the optics are very small.

Editing the sequence - Influence on Optics

MADX Survey

Transfer Matrix

Do TWISS with initial conditions at the IP and RMATRIX flag on:
$\rightarrow \delta \mathrm{p}=\delta \mathrm{p}_{B F P P}, \quad \beta_{\mathrm{x}, \mathrm{y}}, \alpha_{\mathrm{x}, \mathrm{y}}, \mathrm{x}, \mathrm{y}, \mathrm{px} /(1+\delta), \mathrm{py} /(1+\delta)$
with $\beta_{\mathrm{x}, \mathrm{y}}, \alpha_{\mathrm{x}, \mathrm{y}}, \mathrm{x}, \mathrm{y}, \mathrm{px}, \mathrm{py}$ of the main beam orbit at IP2.

This generates TWISS table with transfer matrix elements after each element in the sequence.

MADX 6D Transfer Matrix:
\rightarrow form IP2 @ s=0m
\rightarrow to new front plane of collimator @ $s=356.27 \mathrm{~m}$

Tracking

A.)

Generate coordinates for each particle at IP and track them with transfer matrix M :

$$
\boldsymbol{x}_{\text {coll }}=\boldsymbol{x}_{\text {co,coll }}+\mathrm{M} \cdot \boldsymbol{x}_{I P 2}
$$

where $\boldsymbol{x}=(x, p x, y, p y, t, p t)$ and $M=(6 \times 6)$ transfer matrix
B.)

Calculate σ-Matrix at IP and track envelope:

$$
\sigma_{\text {coll }}=\mathrm{M} \cdot \sigma_{\mathrm{IP}} \cdot \mathrm{M}^{\mathrm{T}}
$$

where $M=(6 \times 6)$ transfer matrix and
$\sigma=\left(\begin{array}{ccc}\sigma_{x} & 0 & 0 \\ 0 & \sigma_{y} & 0 \\ 0 & 0 & \sigma_{t}\end{array}\right) \quad \sigma_{x, y, t}=(2 \times 2)$

A.) Generating distribution @ IP

Generate x_{0}, x_{0}^{\prime} \& y_{0}, y_{0}^{\prime}

R. Bruce et al., Beam losses from ultraperipheral nuclear collisions between 208Pb82+ ions in the Large Hadron Collider and their alleviation, Phys. Rev. ST Accel. Beams 12, 071002 (2009)

Assume Gaussian Distribution of the main beam:

$$
f_{\beta}\left(x_{0}, x_{0}^{\prime}\right)=\frac{N_{b} \beta_{0}}{2 \pi \sigma_{0}^{2}} \exp \left(-\frac{x_{0}^{2}+\left(\alpha_{0} x_{0}+\beta_{0} x_{0}^{\prime}\right)^{2}}{2 \sigma_{0}^{2}}\right)
$$

Distribution of collision point at the IP:

$$
\lambda\left(x_{0}, x_{0}^{\prime}\right)=\frac{\beta_{0}}{\sqrt{2} \pi \sigma_{0}^{2}} \mathrm{e}^{-\frac{2 x_{0}^{2}+\left(\alpha_{0} x_{0}+\beta_{0} x_{0}^{\prime}\right)^{2}}{2 \sigma_{0}^{2}}}
$$

\rightarrow Gaussian distribution with smaller standard deviation $\sigma_{\lambda, 0}$.
\rightarrow The standard deviation of the angular distribution $\sigma_{p, 0}$ is similar to the main beam.

$$
\sigma_{\lambda, 0}=\left(\int x_{0}^{2} \lambda\left(x_{0}, x_{0}^{\prime}\right) d x_{0}^{\prime} d x_{0}\right)^{1 / 2}=\frac{\sigma_{0}}{\sqrt{2}} \quad \sigma_{p, 0}=\sqrt{\frac{\epsilon}{\beta_{0}} \frac{2+\alpha_{0}^{2}}{2}}
$$

A.) Generating distribution @ IP

MAD canonical momentum is: $p_{t}=\frac{E-E_{0}}{p_{0} c}$
Generate $t_{0}, p t_{0}$ where $\mathrm{p}_{0}=(6.5 \mathrm{Z} \mathrm{TeV})(1+\delta)$

- The longitudinal positions of the particles are not important for this analysis, since the impact point (front plane of the collimator) is fixed for this first attempt:
\rightarrow set them all to $t=0$ at the IP.
- Assume that the pt values are Gaussian distributed around <pt>=0 at the IP,
\rightarrow take the change in rigidity into account when generating the transfer matrix for a beam with a given $\delta \neq 0$.

A.) Generating distribution @ IP

Example coordinates of 1000 particles at the IP

B.) Calculate σ-Matrix @ IP

Distribution of collision point at the IP:

$$
\lambda\left(x_{0}, x_{0}^{\prime}\right)=\frac{\beta_{0}}{\sqrt{2} \pi \sigma_{0}^{2}} \mathrm{e}^{-\frac{2 x_{0}^{2}+\left(\alpha_{0} x_{0}+\beta_{0} x_{0}^{\prime}\right)^{2}}{2 \sigma_{0}^{2}}}
$$

σ-Matrix @ IP:

$$
\sigma_{x}(I P)=\left(\begin{array}{cc}
<x^{2}> & <x x^{\prime}> \\
<x^{\prime} x> & <x^{\prime 2}>
\end{array}\right)=\left(\begin{array}{cc}
\frac{\epsilon \beta_{x}}{2} & -\frac{\epsilon \alpha_{x}}{2} \\
-\frac{\epsilon \alpha_{x}}{2} & \frac{\epsilon\left(2+\alpha_{x}^{2}\right)}{2 \beta_{x}}
\end{array}\right)
$$

where $\left.<x^{2}\right\rangle=\int x^{2} \lambda\left(x_{0}, x_{0}^{\prime}\right) d x$
and $\quad \sigma_{0}=\sqrt{\epsilon \beta}$

$$
\begin{aligned}
& \left\langle x^{\prime 2}\right\rangle=\int x^{\prime 2} \lambda\left(x_{0}, x_{0}^{\prime}\right) d x^{\prime} \\
& \left\langle x x^{\prime}\right\rangle=\int x x^{\prime} \lambda\left(x_{0}, x_{0}^{\prime}\right) d x d x^{\prime}
\end{aligned}
$$

Tracking Results

Tracking Results

Mean of tracked Coordinates :

$$
\left(\begin{array}{c}
x \\
x^{\prime} \\
y \\
y^{\prime} \\
t \\
p_{t}
\end{array}\right)=\left(\begin{array}{c}
11.51 \\
0.46 \\
-0.07 \\
1.1 \times 10^{-3} \\
1.36 \\
5.1 \times 10^{-3}
\end{array}\right) \times 10^{-3}
$$

Standard Deviation of tracked Coordinates :

$$
\left(\begin{array}{c}
\sigma_{x} \\
\sigma_{x^{\prime}} \\
\sigma_{y} \\
\sigma_{y^{\prime}} \\
\sigma_{t} \\
\sigma_{p t}
\end{array}\right)=\left(\begin{array}{c}
3.2 \\
5.5 \times 10^{-3} \\
0.5 \\
9.9 \times 10^{-3} \\
9.3 \times 10^{-3} \\
0.13
\end{array}\right) \times 10^{-3}
$$

Coordinates of the orbit for a beam with $\delta \mathrm{p}=\delta \mathrm{pBFPP}$ at the collimator:

$$
\left(\begin{array}{c}
x \\
x^{\prime} \\
y \\
y^{\prime} \\
t \\
p_{t}
\end{array}\right)=\left(\begin{array}{c}
11.51 \\
0.46 \\
-0.06 \\
1.0 \times 10^{-3} \\
0 \\
0
\end{array}\right) \times 10^{-3}
$$

Diagonal Elements of σ-matrix at the collimator:

$$
\left(\begin{array}{c}
\sigma_{x} \\
\sigma_{x^{\prime}} \\
\sigma_{y} \\
\sigma_{y^{\prime}} \\
\sigma_{t} \\
\sigma_{p t}
\end{array}\right)=\left(\begin{array}{c}
3.0 \\
5.3 \times 10^{-3} \\
0.5 \\
9.8 \times 10^{-3} \\
8.9 \times 10^{-3} \\
0.13
\end{array}\right) \times 10^{-3}
$$

$$
\sigma_{x, \sigma} / \sigma_{x, \text { coord }}=\left(\begin{array}{llllll}
0.95 & 0.96 & 0.99 & 0.98 & 0.96 & 0.98
\end{array}\right)
$$

Conversion to FLUKA input

- Positions and angles on collimator:
$-x, x^{\prime}, y, y^{\prime}$ taken as calculated above in units of 10^{-3}.
- $t=s=356.27 \mathrm{~m}$ (collimator front plane) for all particles.
- pt \rightarrow Energy E

$$
\begin{gathered}
E=\sqrt{m^{2} c^{4}+p^{2} c^{2}} \\
p_{P b} \rightarrow p_{P b}\left(1+\delta_{p}\right)\left(1+\delta_{m}\right) \\
m_{P b} \rightarrow m_{P b}\left(1+\delta_{m}\right) \\
\text { with } \delta_{m}=\Delta m / m_{P b} \\
\delta_{p}=\Delta p / p_{P b}
\end{gathered}
$$

$\boldsymbol{s}[\mathrm{m}] \quad \mathrm{x}[\mathrm{mm}] \quad \mathrm{px}[1 \mathrm{e}-3]$	$\mathrm{y}[\mathrm{mm}] \quad \mathrm{py}[1 \mathrm{e}-3]$	$\mathrm{E}[\mathrm{GeV}]$
356.2727738552087	11.191737909334497	0.4579001842525936
356.2727738552087	11.496625233901863	0.45983374181958686
356.2727738552087	11.41993849233247	0.457230674793868
356.2727738552087	11.608769893125471	0.46743617209220867
356.2727738552087	11.18676409431958	0.46096350239369116
356.2727738552087	11.249776295850575	0.46034635348240166
356.2727738552087	11.352870008482677	0.4527917921023345
356.2727738552087	11.177006668858915	0.4496242989253705
356.2727738552087	11.039842721354015	0.4525273825957543
356.2727738552087	11.582886857598343	0.4512987588519191

$$
\begin{aligned}
& -0.10091572291057689 \\
& -0.6042909435847069 \\
& -0.031063363619558606 \\
& 1.3788814660789375 \\
& -0.48634592474716165 \\
& -0.11128541505651827 \\
& 0.502478064017459 \\
& 0.08146247536332968 \\
& -0.5770335984120423 \\
& -0.19500767069237815
\end{aligned}
$$

-0.007773387071119531
-0.009982089815092493
0.003382804806412896
0.0017811294798974412
0.0005359968490555435
-0.0012680882112652157
0.002321144421788362
-0.002063345308004155
-0.013973935653873544
0.001539105386632527

Simulation Scenarios

$\beta=151 \mathrm{~m}$ (at collimator front)
$\epsilon_{\text {nominal }}=3.5 \mu \mathrm{~m} / \mathrm{Y}$
$\gamma=6.5 \mathrm{TeV} / 0.938 \mathrm{GeV}$
$\rightarrow \sigma_{\text {nominal }}=133.6 \mu \mathrm{~m}$

How much of the other beams is absorbed if $\alpha \sigma$ of the BFPP1 beam are intercepted by the collimator jaw?

What effect does the length of the collimator have on the absorption of the produced shower?

What beam properties should be used?

Things to be done...

1. Discuss how to proceed with FLUKA runs: Initial model of simple jaw
2. Intercept other secondary beams from IP (EMD1, BFPP2, EMD2, ...) as function of collimator gap (reduce losses in IR3 and elsewhere).
3. Other positions of the collimator?
4. Check influence of change in sequence on optics \rightarrow include magnet errors?
5. Other optics cases
6. Calculations for B2 on left side of IP2.
