Ion impact distributions of DS collimators in IP2

Michaela Schaumann 02/05/2013

Motivation

Installation of collimators in the Dispersion Suppressor (DS) to both sides of ALICE (IP2) to intercept secondary beams from bound-free pair production (BFPP) and electromagnetic dissociation (EMD).

General Procedure

Convert MADX output into desired format for FLUKA.

Editing the sequence

Nominal Beam Line S.ARC.23.B1 MB.A12R2.B1 MBRC.4R2.B1 MB.B10R2.B1 MB.B11R2.B1 LECL.11R2.B1 MB. A10R2.B1 MB.A11R2.B1 MB.B12R2.B1 MB.C12R2.B1 MB.C13R2.B1 MQXA1R2 MQXBA2R2 MQXBB2R2 MQXA3R2 S.DS.R2.B1 MB.A8R2.B1 MB. A13R2.B1 MB.B13R2.B1 MBLSZ TH2: MB. A9R2.B1 MB.B9R2.B1 E DS P2 B1 MB.B8R2.B1 MBX4R2 Ļ s [m] 100 200 300 400 500 0 IP2 **Modified Sequence** MB.NB3SN, A1982, A.B1 MB.NB3SN, A10R2, B.B1 S.ARC.23.B1 MB.A12R2.B1 S.DS.R2.81 MB.A8R2.81 MOXB A2R2 MOXB B2R2 MOXA3R2 MB.A11R2.B1 LECL.11R2.B1 MB.B12R2.B1 MB.C12R2.B1 MB.B13R2.B1 MB.C13R2.B1 MBRC.4R2.B1 MB.B8R2.B1 MB. A9R2.B1 MB.B9R2.B1 MB.B10R2.B1 MB.B11R2.B1 MB. A13R2.B1 MBLSZ TH2: E DS P2 B1 MQXA1R2 MBX4R2 s [m] 100 0 200 300 500 400 $2 \times 11T$ dipole with L = 5.3m Collimator jaw with L = 1m M. Schaumann, ColUSM

2013/04/12

Magnet to be replaced **MB.A10R2**

Editing the sequence – Influence on Optics

Editing the sequence – Influence on Optics

MADX Survey

Transfer Matrix

Do TWISS with initial conditions at the IP and RMATRIX flag on: $\rightarrow \delta p = \delta p_{BFPP}, \quad \beta_{x,y}, \quad \alpha_{x,y}, x, y, px/(1+\delta), py/(1+\delta)$ with $\beta_{x,y}, \quad \alpha_{x,y}, x, y, px, py$ of the main beam orbit at IP2.

This generates TWISS table with transfer matrix elements after each element in the sequence.

MADX 6D Transfer Matrix:

- \rightarrow form IP2 @ s = 0m
- \rightarrow to new front plane of collimator @ *s* = 356.27m

Tracking

A.)

Generate **coordinates** for each particle at IP and track them with transfer matrix M:

$$\boldsymbol{x}_{coll} = \boldsymbol{x}_{co,coll} + \mathbf{M} \cdot \boldsymbol{x}_{IP2}$$

where $\mathbf{x} = (x, px, y, py, t, pt)$ and M = (6 × 6) transfer matrix

B.)

Calculate σ -Matrix at IP and track envelope:

$$\sigma_{coll} = \mathbf{M} \cdot \boldsymbol{\sigma}_{\mathrm{IP}} \cdot \mathbf{M}^{\mathrm{T}}$$

where $M = (6 \times 6)$ transfer matrix and

$$\sigma = \begin{pmatrix} \sigma_x & 0 & 0 \\ 0 & \sigma_y & 0 \\ 0 & 0 & \sigma_t \end{pmatrix} \qquad \sigma_{x,y,t} = (2 \times 2)$$

A.) Generating distribution @ IP

Generate $x_0, x'_0 \& y_0, y'_0$

R. Bruce et al., *Beam losses from ultraperipheral nuclear collisions between 208Pb82+ ions in the Large Hadron Collider and their alleviation*, Phys. Rev. ST Accel. Beams 12, 071002 (2009)

Assume Gaussian Distribution of the main beam:

$$f_{\beta}(x_0, x'_0) = \frac{N_b \beta_0}{2\pi\sigma_0^2} \exp\left(-\frac{x_0^2 + (\alpha_0 x_0 + \beta_0 x'_0)^2}{2\sigma_0^2}\right)$$

Distribution of collision point at the IP:

$$\lambda(x_0, x'_0) = \frac{\beta_0}{\sqrt{2\pi\sigma_0^2}} e^{-\frac{2x_0^2 + (\alpha_0 x_0 + \beta_0 x'_0)^2}{2\sigma_0^2}}$$

 \rightarrow Gaussian distribution with smaller standard deviation $\sigma_{\lambda,0}$.

 \rightarrow The standard deviation of the angular distribution $\sigma_{p,0}$ is similar to the main beam.

$$\sigma_{\lambda,0} = \left(\int x_0^2 \lambda(x_0, x_0') \, dx_0' \, dx_0\right)^{1/2} = \frac{\sigma_0}{\sqrt{2}} \qquad \qquad \sigma_{p,0} = \sqrt{\frac{\epsilon}{\beta_0} \frac{2 + \alpha_0^2}{2}}$$

M. Schaumann, ColUSM

A.) Generating distribution @ IP

MAD canonical momentum is: $p_t = \frac{E - E_0}{p_0 c}$

Generate t_0, pt_0

where $p_0 = (6.5Z \text{ TeV})(1 + \delta)$

The longitudinal positions of the particles are not important for this analysis, since the impact point (front plane of the collimator) is fixed for this first attempt:

 \rightarrow set them all to **t** = **0** at the IP.

- Assume that the *pt* values are Gaussian distributed around <pt>=0 at the IP,
 - \rightarrow take the change in rigidity into account when generating the transfer matrix for a beam with a given $\delta \neq 0$.

A.) Generating distribution @ IP

Example coordinates of 1000 particles at the IP

B.) Calculate σ-Matrix @ IP

Distribution of collision point at the IP:

$$\lambda(x_0, x'_0) = \frac{\beta_0}{\sqrt{2\pi\sigma_0^2}} e^{-\frac{2x_0^2 + (\alpha_0 x_0 + \beta_0 x'_0)^2}{2\sigma_0^2}}$$

σ-Matrix @ IP:

$$\sigma_{x}(IP) = \begin{pmatrix} \langle x^{2} \rangle & \langle xx' \rangle \\ \langle x'x \rangle & \langle x'^{2} \rangle \end{pmatrix} = \begin{pmatrix} \frac{\epsilon\beta_{x}}{2} & -\frac{\epsilon\alpha_{x}}{2} \\ -\frac{\epsilon\alpha_{x}}{2} & \frac{\epsilon(2+\alpha_{x}^{2})}{2\beta_{x}} \end{pmatrix}$$
where $\langle x^{2} \rangle = \int x^{2}\lambda(x_{0}, x'_{0})dx$ and $\sigma_{0} = \sqrt{\epsilon\beta}$
 $\langle x'^{2} \rangle = \int x'^{2}\lambda(x_{0}, x'_{0})dx'$
 $\langle xx' \rangle = \int xx'\lambda(x_{0}, x'_{0})dxdx'$

M. Schaumann, ColUSM

Tracking Results

Example coordinates of 1000 particles at the collimator: A.)Coordinate B.) σ -Matrix Tracking

Coordinates for B.) Generate Gaussian distributions with mean = orbit coordinates, std. dev.= σ-matrix diagonal elements.

13

Tracking Results

Mean of tracked Coordinates :

$$\begin{bmatrix} x \\ x' \\ y \\ y' \\ t \\ p_t \end{bmatrix} = \begin{bmatrix} 11.51 \\ 0.46 \\ -0.07 \\ 1.1 \times 10^{-3} \\ 1.36 \\ 5.1 \times 10^{-3} \end{bmatrix} \times 10^{-3}$$

Standard Deviation of tracked Coordinates :

$$\begin{bmatrix} \sigma_{x} \\ \sigma_{x'} \\ \sigma_{y} \\ \sigma_{y'} \\ \sigma_{t} \\ \sigma_{pt} \end{bmatrix} = \begin{bmatrix} 3.2 \\ 5.5 \times 10^{-3} \\ 0.5 \\ 9.9 \times 10^{-3} \\ 9.3 \times 10^{-3} \\ 0.13 \end{bmatrix} \times 10^{-3}$$

Coordinates of the orbit for a beam with $\delta p = \delta pBFPP$ at the collimator:

$$\begin{pmatrix} x \\ x' \\ y \\ y' \\ t \\ p_t \end{pmatrix} = \begin{pmatrix} 11.51 \\ 0.46 \\ -0.06 \\ 1.0 \times 10^{-3} \\ 0 \\ 0 \end{pmatrix} \times 10^{-3}$$

Diagonal Elements of σ -matrix at the collimator :

$$\begin{pmatrix} \sigma_{x} \\ \sigma_{x'} \\ \sigma_{y} \\ \sigma_{y'} \\ \sigma_{t} \\ \sigma_{pt} \end{pmatrix} = \begin{pmatrix} 3.0 \\ 5.3 \times 10^{-3} \\ 0.5 \\ 9.8 \times 10^{-3} \\ 8.9 \times 10^{-3} \\ 0.13 \end{pmatrix} \times 10^{-3}$$

 $\sigma_{x,\sigma} / \sigma_{x,coord} = (0.95 \quad 0.96 \quad 0.99 \quad 0.98 \quad 0.96 \quad 0.98)$

Conversion to FLUKA input

- Positions and angles on collimator:
 - x, x', y, y' taken as calculated above in units of 10^{-3} .
 - t = s = 356.27m (collimator front plane) for all particles.
- pt \rightarrow Energy E

$$E = \sqrt{m^2 c^4 + p^2 c^2}$$

$$p_{Pb} \rightarrow p_{Pb}(1 + \delta_p)(1 + \delta_m)$$
$$m_{Pb} \rightarrow m_{Pb}(1 + \delta_m)$$

with
$$\delta_m = \Delta m / m_{Pb}$$

 $\delta_p = \Delta p / p_{Pb}$

s[m] x[mm] p	px[1e-3]	Y	[mm]	py[1e-3]		E[GeV]						
356.2727738552087	7 1	1.191737	909334	497	0.457900	1842525936	-	-0.10091572291057689	-	0.007773387071119531	532975.18224729	28
356.2727738552087	7 1	1.496625	233901	863	0.459833	74181958686	-	-0.6042909435847069	-	0.009982089815092493	532987.04691014	42
356.2727738552087	7 1	1.419938	492332	47	0.457230	674793868	-	-0.031063363619558606	0	.003382804806412896	532908.19960901	.97
356.2727738552087	7 1	1.608769	893125	471	0.467436	17209220867	1	1.3788814660789375	0	.0017811294798974412	532920.18251149	83
356.2727738552087	7 1	1.186764	094319	58	0.460963	50239369116	-	-0.48634592474716165	0	.0005359968490555435	532993.20060339	42
356.2727738552087	7 1	1.249776	295850	575	0.460346	35348240166	-	-0.11128541505651827	-	0.0012680882112652157	532956.67330043	31
356.2727738552087	7 1	1.352870	008482	677	0.452791	7921023345	0	0.502478064017459	0	.002321144421788362	533003.20206217	06
356.2727738552087	7 1	1.177006	668858	915	0.449624	2989253705		0.08146247536332968	-	0.002063345308004155	532965.16321111	67
356.2727738552087	7 1	1.039842	721354	015	0.452527	3825957543	-	-0.5770335984120423	-	0.013973935653873544	532991.80775660	57
356.2727738552087	7 1	1.582886	857598	343	0.451298	7588519191	-	-0.19500767069237815	0	.001539105386632527	533026.99306911	.99

Simulation Scenarios

 β = 151m (at collimator front) $\epsilon_{nominal}$ = 3.5µm/ γ γ = 6.5TeV/0.938GeV $\rightarrow \sigma_{nominal}$ = 133.6µm

How much of the other beams is absorbed if ασ of the BFPP1 beam are intercepted by the collimator jaw?

What effect does the *length of the collimator* have on the absorption of the produced shower?

What *beam properties* should be used?

Things to be done...

- 1. Discuss how to proceed with FLUKA runs: Initial model of simple jaw
- Intercept other secondary beams from IP (EMD1, BFPP2, EMD2, ...) as function of collimator gap (reduce losses in IR3 and elsewhere).
- 3. Other positions of the collimator?
- 4. Check influence of change in sequence on optics → include magnet errors?
- 5. Other optics cases
- 6. Calculations for B2 on left side of IP2.