

Materials for Phase II Collimators

6th Collimation Upgrade Specification Meeting 20.04.2012

<u>A. Bertarelli</u>, E. Berthomé, F. Carra, A. Dallocchio, L. Gentini, M. Guinchard, N. Mariani, S. dos Santos

Π

20.04.2012

Alessandro Bertarelli - EN-MME

1

Departm Engineering

> Z Ш

- Phase II Activities in EN-MME
- Phase II Collimator design principles
- R&D for Phase II Advanced Materials
- HiRadMat Materials Test

PHASE II COLLIMATOR DESIGN PRINCIPLES

CÉRN

epartment

50

Engineerin

Z Ш

PHASE II COLLIMATOR PROTOTYPE

Assembled Jaw of Phase II 1st Prototype; active jaw in Glidcop

PHASE II COLLIMATOR PROTOTYPE

Assembled Jaw of Phase II 1st Prototype; active jaw in Glidcop

Novel Materials R&D

Note Conflicting

requirements as

to Density

Material Requirements for LHC Phase II Collimators

- Reduce RF impedance Maximize Electrical Conductivity
- Maintain/improve jaw geometrical stability in nominal conditions Maximize the stability indicator Steady-state Stability Normalized Index (SSNI)
- Maintain Phase I robustness in accidental Maximize the robustness indicator Transient Thermal
- Improve cleaning efficiency (absorption ratio) Increase Radiation and nuclear Interaction Lengths, i.e
- Improve maximum operational temperature Increase Melting Temperature.

Additional "standard" requirements include ...

 Radiation Hardness, UHV Compatibility, Industrial producibility of large components, Possibility to machine, braze, join, coat ..., Toughness, Cost ...

k

ρα

 $R(1-v)c_{pv}$

Εαρ

Z

Tm

SNI)

epartm

50

Engineerin

Metal Matrix Composites

- Relevant Metal Matrix Composites (MMC) are advanced thermal management materials combining properties of Diamond or Graphite (high *k*, low *ρ* and low *CTE*) with those of Metals (strength, *γ*, etc.).
- Sintering techniques include Rapid Hot Pressing (RHP), Spark Plasma Sintering (SPS), and Liquid Infiltration.
- Candidate materials include Copper-diamond (Cu-CD),
 Molybdenum-diamond (Mo-CD), Silver-diamond (Ag-CD), Molybdenum Graphite (Mo-Gr)

IPAC 2011 - 08.09.2011

PHASE II MATERIALS RANKING

Material	C-C	Мо	Glidcop ®	Cu-CD	Mo-CD	Ag-CD	Mo-Gr
Density [kg/m ³]	1650	10220	8900	~5400	~6900	~6100	~5600
Atomic Number (Z)	6	42	29	~11.4	~17.3	~13.9	~13.1
T _m [°C]	3650	2623	1083	~1083	~2623	~840	~2520
SSNI [kWm²/kg]	24	2.6	2.5	13.1 ÷ 15.3	6.9 ÷ 10.9	11.4 ÷ 15.4	7.4 *
TSNI [kJ/kg]	793	55	35	44 ÷ 51	72 ÷ 96	60 ÷ 92	115 *
Electrical Conductivity [MS/m]	0.14	19.2	53.8	~12.6	~9.9	~11.8	1 ÷ 18 **
	wor	se			better	* Est ** γ=1 sur	imated values 18 MS/m with face coating

- C-C stands out as to thermo-mechanical performances. Adversely outweighed by poor electrical conductivity, low Z, expected degradation under irradiation.
- High-Z metals (Cu, Mo) possess very good electrical properties. High density adversely affects their thermal stability and accident robustness.
- Metal-diamond composites exhibit a balanced compromise between TSNI, SSNI, electrical conductivity, density, atomic number.
- Molybdenum-graphite, currently under development and characterization, shows very promising figures of merit.

No diamond degradation (in reducing atmosphere graphitisation starts at ~ 1300 °C)

EUCARD

- Good thermal (~490 W/mK) and electrical conductivity (~12.6 MS/m).
- No direct interface between Cu and CD (lack of affinity). Limited bonding surface assured by Boron Carbides hampers mechanical strength (~120 MPa).

BC brittleness adversely affects material toughness.

- Cu low melting point (**1083** °**C**) limits Cu-CD applications for highly energetic accidents.
- CTE increases significantly with T due to high Cu content (from ~6 ppmK⁻¹ at RT up to ~12 ppmK⁻¹ at 900 °C)

20.04.2012

artm

BREVETTI BIZZ

MO-CD COMPOSITES

Liquid Phase Sintering (LPS)

Addition of low-melting phase (Cu or Cu-Ag) to fill in the pores between Mo and CD

Good mechanical strength (400+ MPa) and Thermal Conductivity (185 W/mK)

Max T_{Service} limited by low-melting phase (Cu)

Assisted Solid-state Sintering (ASS)

- Addition of small amounts of activating elements (Ni, Pd) enhances Mo sintering at low T (~1300° C)
- Absence of low-melting phase increases service T up to ~2600 °C
- Large diamond particles interfere with Mo

Irradiation tests to start at Kurchatov

CD slightly graphitized

bided.

m Carbides

20.04.2012

AG-CD COMPOSITES

- Developed by EPFL, Switzerland.
- Characterized at EPFL and CERN (**EuCARD**).
- Manufactured by Liquid Infiltration of cylindrical samples (Ø100 mm, H 100 mm)
- ~60% Diamond, ~40% Ag-Si alloy
- Excellent bonding between Ag and CD assured by Silicon Carbides formation on diamond.
- High Flexural Strength (~500 MPa) and toughness.
- High Electrical Conductivity.
- Max T_{Service} limited by low-melting eutectic phase Ag-Si (**840** °C).
- Hard to manufacture large components (>100 mm)
- Material non homogeneities due to liquid metal infiltration intrinsic limitations.

BREVETTI BIZZ Why Graphite?

MO-GR COMPOSITES

- Low CTE
- Low Density
- High Thermal Conductivity
- High Melting (degradation) point
- High Shock wave dumping

Compared to Mo-CD:

No low melting phase (Cu in LPS Mo-CD)

Lower Density

- Similar Thermal Conductivity
- No reinforcement degradation

Lower Costs

Mechanical strength not yet satisfactory

- Mo-GR under intense development program.
- Material properties can still be improved by optimizing base materials, composition and processes.

BREVETTI BIZZ

MO-GR/MO SANDWICH

- Solution to increase electrical conductivity of the composite up to 18 MS/m: sandwich structure;
- Molybdenum Graphite core with two surface layers of high electric conductive pure Mo;
- Sandwich with 1 mm thick Mo layers;
- Coating thickness can be decreased to < 0.1 mm: <u>optimal thickness to be defined with RF team!</u>

Flexural

Strength

(Mpa)

260

NUMERICAL SIMULATIONS

- Explicit calculations performed on Inermet180, Copper OFE and Molybdenum samples
- Calculation on Inermet180 shown below: representative case (σ = 2.5 mm, bunch intensity = 1.5E11 particles)

ERN

NUMERICAL SIMULATIONS

SPH calculations on different beam scenarios to determine spray behaviour, thus:

70 bunches

- window covering (due to vaporized material)
- material density change
- load on Be window

FRN

3

50

en

gine

Ę

• Acquisition feasibility

70 bunches

MATERIAL TESTS IN HIRADMAT

In the HiRadMat facility, novel materials under development for Phase II can be tested under the extreme conditions they may encounter in case of accidental beam impacts.

Objectives:

- Gather, mostly in real time, experimental data on these materials properties (EOS, Strength models, Failure Models). CERN CH-1211 Geneva 23
 EDMS NO. 12.0 VALIDITY 1178003 2.0 DRAFT
- Benchmark advanced numerical simulations.
 - To the best of our knowledge, such an extensive test has **never been done before**.

aeis).	CERN CH-1211 Geneva 23	L11780	0. REV. VALIDITY 003 2.0 DRAFT	·						
			REFERENCE LHC-TC-ES-0004							
erical	ENG	INEERING SPECIFI	CERN CH1211 Geneva 23 Switzerland	EDMS NO. 1186793	REV. VALIDITY 0.1 DRAFT REFERENCE					
. such	REQUIREMENT ASSEMBLE	S FOR 2012 D COLLIMAT	EN Engine	ering Department	C-TC-ES-0005					
een		RADMAT FAC	ENGINEERING SPECIFICATION							
	The robustness of complete their installation in the LHC. Additionally, assessing the p in future LHC Collimators or behaviour of these compone This document describes th the HiRadMat facility on a P Collimator prototype and a mounted on a multi-materia	ABSTRACT: collimators in case of bean performances of materials p other Beam Intercepting I nts in extreme conditions. t tests to be performed in nase I Tertiary Collimator (1 n series of material sampl sample holder.	SPECIFICATIO MATERIAL SA	ON FOR TESTS OF MPLES IN HIRAD	N COLLIMATOR DMAT FACILITY					
	DOCUMENT PREPARED BY: R. Assmann, A. Bertarelli, A. Rossi	DOCUMENT CHECKED BY: O. Aberle R. Assmann V. Baglin	Assessing the performances of m or other Beam Intercepting Devi beam accidents. In order to gath material samples of simple ge specifies the tests to be carr complementing similar tests perfo	Abstract aterials presently used or likely to be us es is essential to anticipate the behavi er exploitable information, it is proposed metrical shape, conveniently equippe ied out in the HiRadMat facility on rimed on a full scale Phase I Tertiary Co	sed in the future on LHC Collimators our of these components in case of I to carry out high intensity tests on cd and monitored. This document a multi-material sample holder, Illimator.					
Alessandro	o Bertarelli – EN	I-MME	DOCUMENT PREPARED BY: Alessandro Bertarelli	DOCUMENT CHECKED BY: CWG (Collimation Working Group) Meeting – 10.10.2011	DOCUMENT APPROVED BY: R. Assmann I. Efthymiopoulos S. Redaelli					

TEST SPECIFICATIONS

- Characterize **six different materials** (Inermet180, Glidcop, Molybdenum, Copper-Diamond, Molybdenum-Diamond, Molybdenum-Graphite)
- Medium intensity and high intensity tests, with different material samples for each material (Type 1, Type2)
- Each sample holder tier can host up to 10 specimens
- Extensive real time data acquisition
- Post mortem analysis

20.04.2012

Type 1 Samples

Beam

Type 2 Samples

Beam

epartm

gineering

Bn

Z Ш

TEST SPECIFICATIONS

- Beam energy: **440 GeV**
- Bunch spacing: **25 ns**
- Protons/bunch: 1.5E11
 - Beam size: $2.5x2.5 \text{ mm}^2$ (medium intensity) or 0.25x0.25 mm^2 (high intensity)
 - Up to **72 bunches** (~4 LHC bunches), limited by Be window.
 - Total expected number or protons ~ 1.3E14

Irradiation History for Inermet180 (Tungsten)

Target	Protons per bunch	Bunches per pulse	Beam size (σ _x x σ _v) [mm x mm]	Number of pulses	Time before next pulse [min]
Type 1 sample Tungsten	5e10	1	2.5 x 2.5	2	20
N	1.5e11	1	n	1	15
N	1.5e11	2	n	1	15
n	1.5e11	4	n	1	15
n	1.5e11	6	n	1	15
N	1.5e11	20	n	1	15
Target	Protons per bunch	Bunches per pulse	Beam size (σ _x x σ _v) [mm x mm]	Number of pulses	Time before next pulse [min]
Type 2 sample Tungsten	5e10	1	0.25 x 0.25	2	20
Type 2 sample Tungsten	1.5e11	60	0.25 x 0.25	1	30

CERN

partme

DATA ACQUISITION SYSTEM

- **LDV** (remote): measures radial velocity of outer cylindrical surface (type 1 samples). Sampling rate > 2.5 MHz
- High Speed Camera (remote): acquires live images of
 impacted type 2 samples. Capture rate up to 30kfps. Critical
 issue is sufficiently powerful lighting.
 - **Strain gauges** (in situ): measures circumferential and axial strains generated on outer surface (type 1 and 2). Acquisition rate > 2.5 MHz.

Temperature and vacuum sensors, microphones (in situ).

- Manufacturing has started.
- All main data acquisition choices made.
- New LDV purchased.
- Material samples ordered and partly delivered.

Video camera mirrors

LDV mirror

Entrance/exit windows

FRI

ask Name	Duration	Start	Finish	November 2011	December 2011	January 2012	February 2012	March 2012	April 2012	May 2012	June 2012	July 2012	August 2012	September 2012 October 2012 N	lovemb
Last proton in LHC	0 days	Wed 31/10/12	Wed 31/10/12											•	31/10
Installation & run of equipment	2 days	Fri 24/08/12	Mon 27/08/12										•		
Equipment ready to run	0 days	Fri 24/08/12	Fri 24/08/12										•	24.08	
Validation & test of equipment	40 days	Mon 02/07/12	Fri 24/08/12									-			
Dimensional control and Equipment alignment	35 days?	Mon 14/05/12	Fri 29/06/12												
Manufacturing of mechanical sub-elements	75 days	Mon 30/01/12	Fri 11/05/12			U.	<u> </u>			→Ţ					
Mechanical assembling	45 days	Tue 01/05/12	Mon 02/07/12							9		-			
External sub-components received	0 days	Mon 30/04/12	Mon 30/04/12							♂ 30/04					
Manifacturing of last sub-elements	30 days?	Mon 16/04/12	Fri 25/05/12						C						
Last sub-elements design (mirrors, Be windows, vacuum pumping port)	30 days?	Mon 05/03/12	Fri 13/04/12						ئے						
Equipment drawings delivery	57 days	Thu 01/12/11	Fri 17/02/12				<u> </u>								
End of the 3D design	0 days	Mon 12/12/11	Mon 12/12/11		^{12/12}										
Start of the design	66 days	Mon 12/09/11	Mon 12/12/11												
Shuku of instrumentation adopted	70 dayo?	Hen 05/00/11	Wod 04/40/44												
Study of instrumentation adapted	ro days?	Wod 21/12/11	Wed 21/12/11	-											
test of equiping sample with gauges	1.5 mone	Thu 05/01/12	Wed 21/12/11		Ŷ	-									
equining all samples with gauges	2 more	Tue 06/03/12	Mon 30/04/12			-									
edahung an sauhies with AgnAes	2 monts	Tue uorua/12	mon 30/04/12					4	T						

ш

EN-MME Phase II Collimator modular design permits the maximum flexibility on the choice of the active jaw material.

- A first prototype, with Glidcop jaws, is being built by MME.
- Several novel materials are under study and development for the Phase II jaw.
- MMC combining metal properties with those of graphite or diamond are particularly appealing.
- Figures of Merit were defined, allowing to pinpoint "best" candidates and to set ambitious goals.
- Cu-CD, Mo-CD and Ag-CD were studied and successfully produced. Size challenge has been met for Cu-CD and Mo-CD.
- Promising results have been achieved in the last months on Mo-Gr development; substantial room for improvement seem to exist.
- Radiation hardness assessment is almost completed for Cu-CD, still to come for the other selected materials.
- Beam tests under extreme conditions foreseen at CERN's HiRadMat facility.
- Design of HiRadMat test bench finalized. Procurement and production ongoing.

Ш

CONCLUSIONS