3rd LHC Collimation Upgrade Specification Meeting CERN, Geneva 23rd February 2012

Status of multi-turn tracking of protons from IR debris

Stefano Redaelli, BE-ABP

Acknowledgements: R. Bruce, T. Weiler

Scope Multi-turn tracking *<u><u></u> Examples</u>* **V**Loss maps **Outlook**

We need tools to track the product of collisions around the ring

- Multi-turn tracking
- Precise treatment of large off-momentum errors
- Model the interaction with the collimators
- Natural choice: SixTrack version for Collimation studies
 For the moment, different simulation setup to study the interaction of primary protons on the collimators of IR7/3
- Need to setup tracking using external input distributions from IP1/2/5
 - Done in the past (T. Weiler, F. Roncarolo, et al.) within different scopes
- Today: only discuss proton simulations

Multi-turn tracking from IP1

Example: start tracking in IP1, 3.5 TeV (2011 config)

Initial distributions generated off-line Crossing and separation: computed by SixTrack Then, standard tracking with collimators

Χ'

-1

-1

-1

0

0

x 10⁻⁴

x 10⁻

x 10

20

0L -2

60

40

20

-2

2

x 10

Nominal bunch, on-momentum, 640 trajectories Shown: Vertical (crossing) plane

Example: tracking results

0.3

0.2

0.1

0.1

(X,X')

-0.05

0.05

0.1

Developed tools to check distributions at various elements around the ring → will use them for particle distributions at the cryo-collimator locations 0.1

0.1

0.05

0.1

0.05

-0.05

-0.1

(y,y')

-0.05

Tracking of off-momentum particles

Acceptance for $A_{\beta}=0$

 $\left(\frac{\delta p}{p}\right)_{\rm cut} = \frac{A(s)/2 - \Delta_{\rm CO}(s)}{D_x(s)}$

Approximated linear model

Following the particles around the ring...

More realistic IP distributions

Real betatron distributions for different δp/p! Color coding: 0.4 % 0.6 % 0.7 % 1.0 % 1.2 %

Momentum acceptance can be re-computed with the betatronic transverse distributions

Tracking of off-momentum bunches

Example of loss maps from IR1

12

A look at other IPs

Outlook

- Presented the status of tracking tools for single- and multi-turn losses of IR products
 - SixTrack with collimation routines were prepared to study what leaks out of the IPS
- Tools are ready to start detailed simulations!
 - Tracking under control.
 - Can produce loss maps for present machine layout!
 - Still to improve and fully debug preliminary setup to start in different IPs
 - Comparison with analytical models to check dynamics of off-momentum particles
- ✓ Need realistic particle distributions from the p-p collisions!
 - See previous talk by Francesco

What comes next:

- Simulations with real distributions from FLUKA
- Comparison with 2011 data at 3.5 TeV
- Study dependence on beam and machine configurations (Xing) to define a solid layout for DS collimators