

Draft

Preliminary integration of Hollow e-lenses

EDMS No: **1764989 v.2 (V.1. Presented on 26th TCC 16/03/2017)** References: 1765930.v.1

M. Alcaide Leon, Paolo Fessia

Contributions

HEL conceptual design and parameters: D. Perini, C. Zanoni
Beam optics and HEL technical coordination: A.Rossi
HEL 3D Modelling: A. Kolehmainen
3D Integration Modelling: M. Gonzalez
QPS requirements: D. Wollmann, R. Denz, A. Verweij
Power Converters requirements: M. Martino & Y. Thurel
Vacuum requirements: P. Santos
Cryogenics requirements: S. Claudet

EDMS No: 1764989 v.2. 22/05/2017

INDEX

- 1. Preliminary integration of HEL in HL-LHC machine and technical services in the tunnel of 4L
- 2. Preliminary integration of technical services in service caverns of 4L
- 3. Conclusions

REMARK

This is a preliminary integration study of the Hollow e-lenses in the machine lay-out for HL-LHC and its technical services in the tunnel and service caverns with the present conceptual design of the device (EDMS No: 1765930.v1). The conceptual design is subject to change due to further technical optimizations and definitions by the WPs involved in its design. In particular possible integration in the Hollow elenses of Beam Instrumentation that are not accounted here and for which the possible impact on the device and layout is not known.

Preliminary integration of HEL in HL-LHC machine and technical services in the tunnel of 4L*

*Please note that 4R is symmetric to 4L

Overview of LSS4 P4L

HEL – Dimensions Previous design was used in May 2017. Integration being redone with new optimized design

Previous total length used for this integration 6171 mm New design total length used for this integration **6630 mm** 1764989 v.2

Interface with other equipment in the tunnel

- Cryogenics supply:
 - New dedicated service module and jumper. Options:
 - Possibility to install one dedicated service module for HEL leaving space for a future service module for new xxxMHz module or,
 - install a double service module with two jumpers for HEL and future xxxMHz module

Tunnel general services

- Water cooling pick up for collector: needed.
 Integration being studied
- Services for e-gun powering:
 - I or 2 modulators placed under the e-lens.

HILUMI HL-LHC PROJECT Modulator envelope - 50x50 cm x 30cm height

Available space under HEL:

- Width: 2 m (space between jacks)
- Depth: 1m
- Height: 500mm

1764989 v.2

Preliminary integration of technical services in Service caverns of 4L*

*Please note that 4R is symmetric to 4L

Power supplies - Circuit rating

	Main solenoid	Bending coils	e-gun coil 1	e-gun coil2	Correctors main sol.	Correctors bend coil	Correctors e-gun	
Characteristics	3 coils 1m-long	2 coils 15-cm-long	1 coil 20-cm-long	1 coil 20-cm long	6 flat dipole coils	2 flat dipole coils	2 flat dipole coils	
Numb. of indipendent circuits	3	2	1	1	6	2	2	
Nominal current	330 A	330 A	106 A	54 A				
Maximum current	450 A	450 A	150 A	150 A	50 A	50 A	50 A	
Inductance	3x3.71 H	2X0.66 H	0.09 H	0.09 H				

- Total number of independent circuits: 17
 - 7 PC x HL-LHC600A-10V
 - 10 PC x Cancun 50
- Total number of racks: 6 PC racks + 1 control rack
 - Spare slots taken into account
 - Water cooling for HL-LHC600A-10V

Power supplies - Characteristics

Project Qty (Totat: 17 units)	Magnet Type / function	Magnet Differential Inductance	Magnet Resistance @ 25 °C	Magnet U.max dVdt.max + Lmax	Cable Go-only Length (distance between Converter Rack, and Magnet)	Equivalent Cable Cross Section	Cable Resistance @ 45 °C (2x Cable-only length data computed)	Circuit Resistance @ 45 °C for its load cable and @ 25°C for magnet	Energy Stored	Circuit Ramp Time (from 0 to Lmax	Circuit dVdt.max	Circuit U.max di/dt.max + Lmax	Circuit Lnom (operation)	Circuit Lmax (operation)	Circuit Op. Use (DC, Slow Pulsed, Pulsed)	Circuit Op. Use (Unipolar, Bipolar)	Converter Name / Model	Converter Cooling Water System Required
		Load Differential Inductance	Load. Resistance		Load. Cable Length	Load Cable C ross-Section	Load Cable. Resistance	Circuit. Resistance										
.7	•	(H) 🗸	[Ohm] 🖵	M 🗸	[m] 🖵	(mm²) 🗸	[Ohm] 🖵	[Ohm] 🚽	ب ابا	[8] 🖵	[A/s] 🖵	M 🗸		[A] 🖵	0 👻			0 💌
3	Main Solenoid	3.7100	0.000	5.57	50	240	0.01	0.01	375 638	300	1.50	9.14	330	450	DC	Unipolar	HL-LHC600A-10V	Yes
2	Bending Coil	0.6600	0.000	0.99	50	240	0.01	0.01	66 825	300	1.50	4.56	330	450	DC	Unipolar	HL-LHC600A-10V	Yes
1	E-gun Coll-1	0.0900	0.000	0.06	50	120	0.02	0.02	1 013	240	0.63	2.44	106	150	DC	Unipolar	HL-LHC600A-10V	Yes
1	E-gun Coil-2	0.0900	0.000	0.06	50	120	0.02	0.02	1 013	240	0.63	2.44	54	150	DC	Unipolar	HL-LHC600A-10V	Yes
6	Corrector Main Solenoid	0.0000	0.000	0.00	50	90	0.02	0.02	0.000	240	0.21	1.06		50	DC	Bipolar	Cancun.50	No
2	Corrector Bending Coil	0.0000	0.000	0.00	50	90	0.02	0.02	0.000	240	0.21	1.06		50	DC	Bipolar	Cancun.50	No
2	Corrector E-gun	0.0000	0.000	0.00	50	90	0.02	0.02	0.000	240	0.21	1.06		50	DC	Bipolar	Cancun.50	No

- Cabling characteristics:
 - Waiting for AC and DC cabling definition and integration
 - First check from EN-EL→ Installed power in UA43/47 should be enough

HEL – Other racks needs

QPS: — To be revised

- EE system needed?→ Study by WP7 to see if they are self protected
- Racks \rightarrow 2 min, 6 max (if EE needed)
- Location: together with the PCs
- BI: 2 racks for control
- E-gun:
 - An Electrical Cabinet roughly, 2m wide, 1.2m deep, and 2.5m high. Into this cabinet all equipment at 15kV potential. (water cooling no needed)
 - A standard 19 inches rack with control electronics, cathode PC (referred to ground) and the main circuit breaker
 Integration of these 2 elements is being studied

Racks needs summary

System	Min. racks	Max. racks
Power converters	7	8
QPS	2	6
BI	2	2
E-gun	1	2
Total	12	18

Option 1: UA43 & UL44 (P4L) / UA47 & UL46 (P4R)

Racks-Location

Option 2: UA43 (P4L) / UA47 (P4R)

Conclusions

1764989 v.2

1764989 v.2

HEL – Conclusions

- In view of a possible technological and integration review in autumn this year the integration and service analysis should be updated taking into account:
 - Results of EE computation
 - Addition of Beam Instrumentation equipment and its impact on the HEL design and of the general services requirements
 - A detailed analysis of other ancillary equipment that should be placed in the LHC tunnel (e-gun ancillaries?)
 - Cabling routing from PC to HEL should be defined and integrated

Thank you

1764989 v.2

1764989 v.2

Extra slides

1764989 v.2

Sketch layout with HEL - 4L

1764989 v.2

Interface of HEL with other equipment

Vacuum:

- Vacuum pressure during operation must be lower 10⁻¹¹ mbar.
- Vacuum chamber NEG coated.
- Vacuum chamber inner diameter: 80 mm.
- Vacuum chamber material: cooper.
- Bake-out temperature: 250°C.
- 25 mm bake-out jacket.
- Sector valve for the e-gun:
 - Exchange procedure to be study.
- The design of the collector should avoid degassing.
 - In case of collector degassing, ion pumps or in worst case 1 m length NEG coated vacuum pipe on both sides of the HEL should be installed. (Not in present layout proposal) → to be studied by the HEL team and WP12.

<u>BI:</u>

- 2 x Current Transformer
- 2 x Beam Position Monitor
- 2 x Gas Jet Monitor

1764989 v.2

Interface of HEL with other equipment

From inside to outside in grey the room temperature vacuum tank, in brown the thermal screen, in grey the helium tank wall, in orange the main solenoid, in blue the corrector coils generating a horizontal and a vertical dipole. Then follow the helium tank wall, the thermal screen and the vacuum tank. The overall external diameter is 454 mm.

Sketch layout in case of possible RF upgrade

1764989 v.2

Sketch layout in case of possible RF upgrade with arbitrarily longer HEL

(+500 mm for instrumentation)

1764989 v.2

HEL – Conclusions

System	Туре	Description	Actions
Gas Position Monitor	Open option	It will increase the length of the device, therefore decrease space between HEL and BPM after ADT	Wait to see if it is going to be included
Gun and collector degassing	Design optimization	Design of electrons gun and collector to avoid degassing, otherwise 1m of vacuum chamber in both extremes of HEL with NEG coating needed	Design of the collector avoiding degassing
Space for pumps	Design optimization	Not so much space for the ion pump in e-gun	Interaction with Vacuum for HEL design
Supports for vacuum chamber	Design optimization	Support of vacuum chamber between HEL and Valve takes space maybe needed	Design of new supports
Racks options	Integration study	Two options for racks, depending on total number of racks needed and space availability	Conduct integration studies
Cryogenic supply	Technical study	Two options for cryogenic supply	Conduct studies
EE	Technical study	On-going study to see if the coils are self-protected, it will save space for EE racks	Wait for results
DC Cabling	Study	DC cabling and integration has to be studied	Conduct studies

