UPDATES OF IRRADIATION TESTS AT GSI ON LHC COLLIMATOR MATERIALS

E. Quaranta, F. Carra, P. Hermes

Many thanks to...

M. Tomut, C. Hubert, K. Kupka, J. Stadlmann
GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany

A. Bertarelli, F. Carra, P. Hermes, S. Redaelli, A. Rossi
CERN, Geneva, Switzerland

Our materials suppliers:

M. Kitzmantel, E. Neubauer
RHP-Technology GmbH, Seibersdorf, Austria

S. Bizzaro
Brevetti Bizz
Outline

- Motivation and Objective
- GSI irradiation facility
- Feb-Mar 2014 irradiation campaign
- July 2014 irradiation campaign
- What’s next?
Motivation and Objective

Collimators subjected to high level of radiation doses during the normal LHC operation which lead to **DRAMATIC CHANGES** in the material properties:

- Decrease in thermal conductivity
- Increase in electrical resistivity
- Increase in Young’s modulus
- Deformation

Collimator materials **MUST** **MINIMIZE** the WORSENING of phys/mech properties due to radiation-induced effects

Will the present and the novel collimator material survive the HL-LHC scenario?

The answer will take into account their **behaviour** in highly **irradiation environment**.
GSI facility

all ion species
p, Ar, Au, Pb, U

Ion Sources

UNILAC 100 m

M-Branch

Mikroprobe

UNILAC beamlines
Energy: 3.6-11.4 MeV/u
Range: 40-120 µm
beam spot area: 10x10 mm to 50x50 mm
Feb-Mar 2014 irradiation campaign

- **²³⁸U** irradiation: 1.14 GeV, 0.5 ms, 0.6 Hz, 4x10⁹ ions/cm²s
- **²⁰⁸Bi** irradiation: 1 GeV, 0.5 ms, 3.4 Hz, 1.2x10⁹ ions/cm²s

- **CuCD, CFC** (2 orientations), **MoGr** (MG 3110P, 2 orientations, samples not annealed) irradiated with fluences up to 5e13 i/cm²
July 2014 irradiation campaign

- 197Au irradiation:
 - ion energy: 945 MeV
 - pulse frequency: 40 Hz
 - flux: \sim1-2x10^9 ions/cm2s
 - beam spot: 2.2x2.2 cm

- 6C irradiation (ongoing): 11.4 MeV/u, flux: 5x10^9 ions/cm2s
Thermal properties degradation

On-Line monitoring during irradiation with thermal camera (acquisition rate: 2kHz).

Estimation of time constant at cooling on:
- **Mo-Gr:** 2 orientations x 2 different annealing processes (1150°C and 1300°C for 4h)
- **CFC:** 2 orientations
- **CuCD**

Another batch of samples is currently under C-ions irradiation at fluence up to 1e14 i/cm²

Fluences: 1e11, 1e12, 1e13, 5e13 Au-ions/cm² at fluxes ~2e9 Au-ions/cm²s

Fluence up to 1e13 Au-ions/cm² at fluxes ~1e9 Au-ions/cm²s
Radiation-induced deformation

Measurement at optical microscope of **shortening after irradiation** on:

- **carbon fibers** (3 mm, Ø= few µm, Granoc XN-100-03Z), used as MG composite reinforcement

Quite challenging to mount on the holders!!

fluences: 1e11, 1e12, 1e13, 5e13 Au-ions/cm² at fluxes ~ 1e9 Au-ions/cm²s
What’s next?

- Thermo-mechanical and structural characterization of irradiated samples
- Quantitative evaluation of online thermal camera monitoring data
- Further irradiation during next beam-time (preliminary schedule):

 Mid-August:
 - Low duty cycle **Au-ions** irradiation

 Mid-September:
 - irradiation with **Xe-ions** and **Au-ions**

 October/November:
 - irradiation with **laser**
THANK YOU FOR YOUR ATTENTION
Backup slides
CFC AC-150K

- Developed by Tatsuno (Japan)

Composition:
- Graphite flakes
- Carbon fibers

Density: 1.67 g/cm3

Currently used as TCPs and TCSGs active jaw material

Main limitations:

- **Poor electrical conductivity (0.18 MS/m)**
 - RF Impedance induced beam perturbations

- **Limited Radiation Hardness**
 - Reduced Lifetime for LHC operations
 - Need for replacing degraded Collimators
Copper-Diamond composite

- Developed by **RHP-Technology** (Austria)

Composition:
- 60%v diamonds (90% 100 µm, 10% 45 µm)
- 39%v Cu powder (45 µm)
- 1%v B powder (5 µm)

- No diamond degradation
- Thermal (~490 Wm\(^{-1}\)K\(^{-1}\)) and electrical conductivity (~12.6 MSm\(^{-1}\))
- No direct interface between Cu and CD (lack of affinity). Partial bonding bridging assured by Boron Carbides limits mechanical strength (~120 MPa).

- Cu low melting point (1083 °C)
- CTE increases significantly with T due to high Cu content (from ~6 ppmK\(^{-1}\) at RT up to ~12 ppmK\(^{-1}\) at 900 °C)

Limitation for collimator!

BC “bridge” stuck on CD surface. No CD graphitization
MG: composition and production

Basic composition & main production parameters:
• 40%v natural graphite flakes (Asbury)
• 20%v short carbon fibers (300 µm, Cytek DKD)
• 20%v long carbon fibers (3 mm, Granoc XN-100-03Z), blended
• 20%v Mo powder (5 µm)

• Powders pre-cleaning under H₂-N₂ atmosphere at 600°C
• RHP: complete melting of Mo₂C at ~2600°C, 35 MPa applied pressure (in steps), reducing H₂-N₂ atmosphere at 10⁻⁴ mbar.