

Updates and Programme for SLAC RC Tests

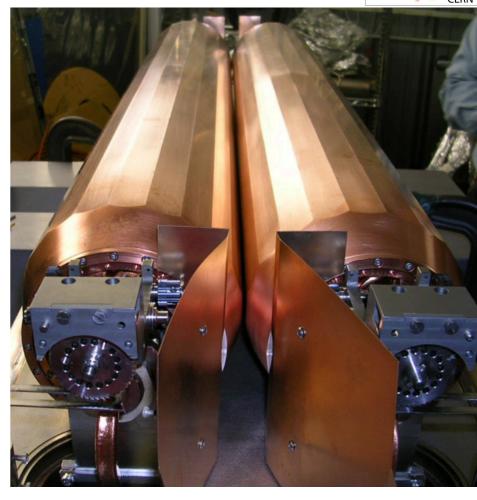
LHC Collimation Upgrade Specification Meeting

April 11th, 2014

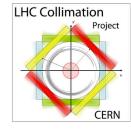
G. Valentino, P. Gradassi

with input from:

O. Berrig, A. Bertarelli, N. Biancacci, F. Carra, M. Donze, P. Gander, J. Kuczerowski, T. Markiewicz, S. Redaelli, B. Salvant

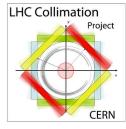

SLAC Rotatable Collimator

- The SLAC RC was built as part of the US-LARP collaboration.
- **Objective:** produce a machine-ready prototype for beam tests in SPS/LHC (or HiRadMat).
- Rotatable jaw concept: offers up to 20 collimating surfaces in case of beam damage.

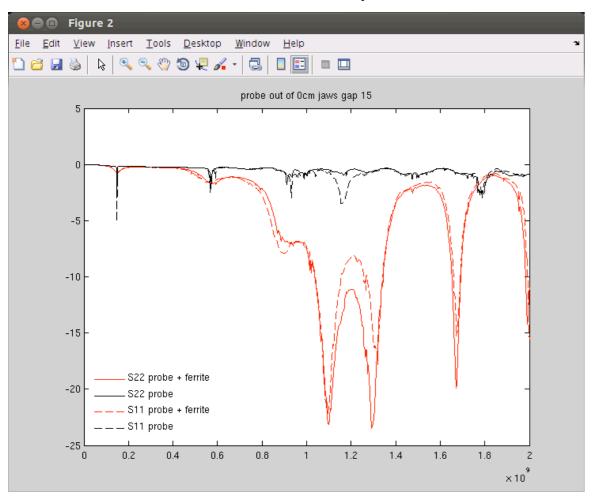

Timeline:

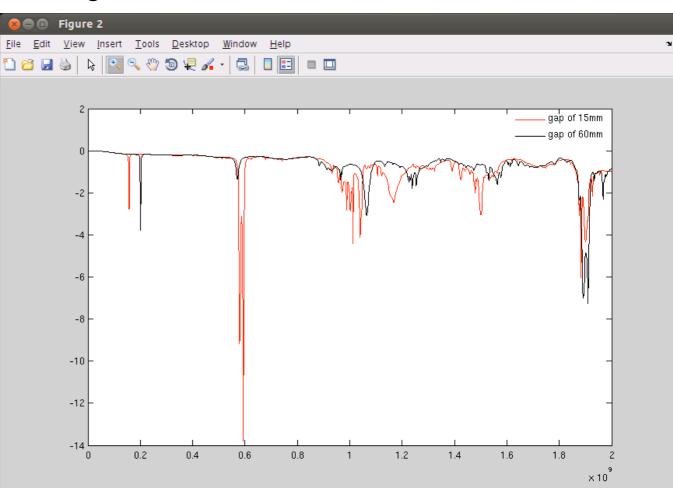
- → 27.11.2013: Arrival of SLAC collimator at CERN.
- → 12.02.2014: SLAC RC tank opened.
- → 05.03.2014: SLAC RC passed first leakage test.
- → 11.03.2014: First jaw movement tests.
- ⇒ 20.03.2014: Start of wire impedance tests.
- 22.04.2014: Foreseen start of controls tests.

Leakage tests



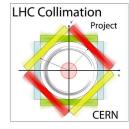
- Leakage tests were performed on 05.03.2014 and 11.03.2014.
- Nitrogen sprayed around the flanges, collimator found to be correctly sealed:
 - 7.3E-7 mbar (internal pressure level)
 - 1.0E-9 mbar/s (leakage level)
- The external company performing the tests should send additional reports shortly (P. Gradassi).





Impedance Tests (Preliminary)

- Reminder: SLAC RC design not optimized for impedance.
- Wire impedance tests performed in the last couple of weeks, with and without ferrites rings, and at different jaw gaps.
 - Ferrites: allow to distinguish between real collimator modes and those created by the probe.
- Several resonant frequencies observed in the range of 0.5 to 2 GHz.



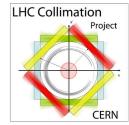
Courtesy of N. Biancacci, J. Kuczerowski, O. Berrig

- Observed the same modes as L. Xiao, estimates of impedances will be provided soon.
- To be discussed further within the impedance team.

Proposed Controls Tests

- First movement tests performed on 11.03.2014, jaws moved from inner to outer switches.
- Several controls tests scheduled for 22-25 April to coincide with T. Markiewicz's visit to CERN.
 These tests should all take place in bldg. 272.
- A dedicated test stand has been ordered and should be received before the tests (P. Gander).
 If not, if TCTP impedance tests are finished, we can use the TCTP test stand.
- Draft proposal for controls tests based on those for standard LHC collimators has been circulated for discussion:

Torque measurements


Test stand available in bldg. 272

Translational movements:

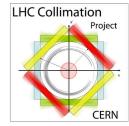
- Metrology (bldg. 72) for jaw parallelism + perpendicularity to horizontal: still to be decided if CMM or optical tooling will be used (A. Cherif).
- Movement of the jaw from inner to outer switches, without losing steps.
- Measurement of mechanical play for each axis with an accuracy of 5 μ m.
- Maximum tilt angle: T. Markiewicz suggests standard software tilt protection of 2 mm (like for standard collimators), to be checked with engineer at SLAC.

Proposed Controls Tests

LVDT calibration:

- Calibration done at SLAC was not satisfactory, should be repeated at CERN.
- Ensure that LVDT follows motor position during jaw movement.
- Should use mechanical end stop data, however this is not available (P. Gander). Could try to make some measurements.

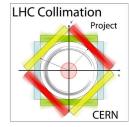
Playing of functions:


 A table with jaw positions will be input to the control software to ensure repeatability of motion.

Jaw auto-retraction:

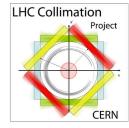
- Verify that the jaws automatically retract in the event of a power cut via return springs.
- Rods tying downstream and upstream ends of the drive table to allow one motor end to drag the other around can be shipped to CERN, if needed.

Proposed Controls Tests



Rotational movement:

- All tests will be done with the standard LHC collimator FESA class. The controls interface will be modified to handle the rotational movement (M. Donze, P. Gander).
- From the beam's view, left jaw rotates clockwise, right jaw anti-clockwise.
- Ensure that opposite jaw facets facing the beam are parallel.
- T. Markiewicz proposes several steps to verify that the rotation system of each jaw operates as it did before shipment:
 - As there isn't a readout angle, use visual evidence to show that requested #steps is delivered.
 - The "zero" mark is inscribed on the drive wheel, which sits directly under the pawl when the facet is aligned.
 - One facet requires 8 full turns of the drive wheel; drive wheel has 48 teeth; 384 "clicks" required for one facet to rotate.
- Rotation tests to be done first in air, then under low quality vacuum, then after bakeout.
- Rotations cause cooling tube along support axle to twist.
- A number of facet rotations should be saved for HiRadMat tests (jaw designed for 1 full rotation only).


Tests for 22-25 April

- Should schedule tests to profit from Tom's presence:
 - ✓ Torque measurements
 - **✓** Translational movements
 - ✓ LVDT calibration
 - Playing of functions
 - Jaw auto-retraction
 - **✓** Rotational movements

Future programme

- T. Markiewicz will come to CERN in the week from 21-25 April, when controls tests will be performed.
- This will be followed by vacuum tests (location and dates to be decided).
- A. Bertarelli will present the next status at the LARP / Hi-Lumi LHC Collaboration meeting in early May.
- Take decision whether to install in HiRadMat or SPS based on vacuum tests.