Status of the IIT cryo-assembly design and integration

Presented at ColUSM #34, February 21, 2014

Outline

- Recall from last talk (January 2013)
- What are we looking for in the new solution
- The IIT cryo-assembly
- Main integration issues
- Status of the cold mass and cryostat design

From last talk (Jan. 2013)

- Cold collimator discarded. The baseline is a room temperature vacuum baked collimator.
- Remove one MB cryo-magnet and replace it with a new cryoassembly of equal length, integrating:
 - 2x 11T short magnets
 - I collimator
- Longitudinal integration benefits from placing the collimator in the middle
- Fitting within the 15660 mm length of a standard MB is a challenge

Aim for full interchangeability with a standard dipole (no changes to neighbouring cryomagnets)

- No changes to cryo, electrical or mechanical interfaces (different jack's position is inevitable)
- 15660 mm long, interc. included
- Inside the 11 T cryostat:
 - X-line remains straight
 - He II free cross section: 60 cm²
 - Pressure drop of He II circuit: 4.3 kPa/m (50 mm smooth pipe)
 - Pressures and temperatures acording to LHC-Q-ES-0001 (edms 90032)

Operation and maintenance

- Mechanical decoupling from cryostat and collimator for <u>removal</u> and alignment of collimator without warming up the arc bellows between collimator tank and cryostat, independent supports to the floor, compatible integration
- One collimator design fits beam 1 and beam 2
- Minimise exposure to residual radiation ⇒ simplify removal/installation of collimator, ex. quick CF flanges, prealigned collimator support system, "rapid" electrical and hydraulic connections (but not remote handling), permanent bakeout insulation
- Ports for "RF-ball" test of new sectors
- Transport constraints: Stay in the "shadow" of the existing arc cryostat

Vacuum

- Room temperature (bakeable) collimator vacuum operated and maintained independently from cold beam vacuum

 sector valves on both lines
- Beam screens (K-line cooling) with same reliability and performance as rest or the arcs (no helium to beam vacuum welds, testing, etc.)
- No demountable vacuum tight joints in cryogenic system (all welded)
- Ensure pressure safety of each new beam vacuum "subsectors" ⇒ rupture disks on SSS ports
- Ensure pressure safety of insulation vacuum (DN 200's)
- Respect current RF-impedance requirements: ex. shielded sector valves, shielded bellows, max 15^o taper angle

Thermo-mechanical

- Busbar flexibility must take into account adjacent magnets
- Temperature offset between cold mass and beam screen during transient
- Temperature variation between two cold masses during transient
- Cold to warm transitions on the beam lines

CERN CH-1211 Geneva 23 Switzerland the Large Hadron Collider project	LHC Project Document No. LHC-LVI-ES-0003 rev 1.0 CERN Div. Group or Suppler/Contractor Document No. LHC-VAC EDMS Document No. 350950 Date: 2002-10-23	CERN CH-1211 Geneva 23 Switzerland the Large Hadron Collider project	LHC Project Document No. LHC-VST-ES-0001 rev 1.0 CERN Div./Group or Suppler/Contractor Document No. LHC/VAC EDMS Document No. 351092 Date: 2002-12-09	
Functional Specification BEAM VACUUM INTERCONNECTS IN THE DISPERSION SUPPRESSOR AND LONG STRAIGHT SECTIONS OF THE LHC		LONGITUDII FOR THE	Functional Specification LONGITUDINAL COLD WARM TRANSITIONS FOR THE LHC BEAM VACUUM SYSTEM	
Abs Several different types of Beam Vacuum Suppressor and Long Straight Sections of their description, location in the machine, i	tract Interconnects are needed in the Dispersion the LHC. This Functional Specification gives nain features and design parameters.	This Functional Speci vacuum cold-warm tra	Abstract fication describes the requirements for the LHC longitudinal beam ansitions in the LHC cryo-assemblies.	

Before the IIT magnet development: QTC (2010)

Delio.Ramos@cem.ch

Could the QTC cryostat concept be "extended"?

- Can only be finished after cryostating
- Dealing with welding distortions is a major issue
 - Distortions amplified with length
 - Adjustment of cold supports posts is required
 - Complicated assembly procedure

The IIT cryo-assembly concept

- Independently cryostated and handled cold masses, linked through two short transfer lines
- Transfer lines with expansion joints mechanically decouple cryostats A and B
- Splice and piping interconnect in the tunnel, all other work prior to installation
- Can use the **existing TCLD collimator design** with modified the supports

Access for in-situ repair

- Once the collimator removed, the vacuum vessel cover can slide open
- Good to have in-situ access for repair of «fragile» components:
 - Expansion joints
 - Flexible hoses
 - Diode
 - Instrumentation feedthrough (IFS)
 - Current leads (?)

3D Integration

C' and K lines not shown

Elements defining the design in the transverse plane

- Line X insulation
- RF-shield module of gate valve

Main features

- Seen by neighbouring magnets as standard MB cryo-assembly: Staightforward replacement in case of major problem
- Can be cold tested as a single unit in a dipole test bench and split in two for handling and transport
- Standard alignment procedures
- Completely independent operation of collimator and cryogenic systems
- Access for some in-situ repairs
- Simplified construction
- Non-compromised functionality wrt existing arcs
- Passed a first iteration with simplified CAD model
- Minimised impact on the collimator design (assuming 800 mm long TCLD)

Will it fit in 15660 mm? (Layout of beam line equipped with collimator)

Section	Element	Length standard	Length optimised
Interconnect upstr.	Interconnect	250	250
Interconnect upstr. To	tal	250	250
Cold mass A	Cold mass A		
Cold mass A	End cover	154	154
Cold mass A	Outer shell extension	56	56
Cold mass A	End plate	75	70
Cold mass A	Coil	5622	5622
Cold mass A	End plate	75	70
Cold mass A	Outer shell extension	56	56
Cold mass A	End cover	154	154
Cold mass A Total		6192	6182
Cold line A	beam screen termination with nested bellows	213) 181
Cold line A	Plug-in module	165	147
Cold line A	Cold warm transition with RF ball insertion port	263.5	263.5
Cold line A Total		641.5	591.5
Warm line A	Sector valve		75
Warm line A	RF-shielded bellows	163) 121
Warm line A Total		238	196
Collimator	RF transition and flange	140	140
Collimator	Jaw tapering and pick-up	100	100
Collimator	Tungsten	1000	800
Collimator	Jaw tapering and pick-up	100	100
Collimator	RF transition and flange	140	140
Collimator Total		1480	1280
Warm line B	RF-shielded bellows	163	121
Warm line B	Sector valve	75	75
Warm line B Total		238	196
Cold line B	Cold warm transition with RF ball insertion port	263.5	263.5
Cold line B	Plug-in module	(165	147
Cold line B	beam screen termination fixed side	122	122
Cold line B Total		550.5	S1932.5
Cold mass B	End cover	154	154
Cold mass B	Outer shell extension	56	56
Cold mass B	End plate	7读	10 [.] 70
Cold mass B	Coil	\$622	5622
Cold mass B	End plate	otill ZA	70
Cold mass B	Outer shell extension	1 OY 156	56
Cold mass B	End cover	154	154
Cold mass B Total	Ň	6192	6182
Interconnect downstr	. Interconnect	250	250
Interconnect downstr	. Total	250	250
Grand Total	×eo`	16032	15660
Dipole length	mar	15660	15660
Margin		-372	0

Main integration topics

Торіс	Issue	Status
Sizing of cold beam lines	 Standard 50 mm cold bore tubes and beam screens 	Approved
Powering	 Current baseline: In series with MB magnets Trim circuit required 2x 300 A current leads integration 	In-work
Magnet protection	 Difficult integration of diode stack in cryo-assembly B 	Starting soon
Spools	 One pair integrated in cold mass B, downstream end cover 	To be confirmed
Longitudinal integration	 Re-design vacuum components to optimise length 	Starting soon (TE-VSC)
Electromagnetic interference	 Interference between busbar magnetic field and collimator LVDT's? 	To be discussed
Over pressure safety devices	 Insulation vacuum: number and placement of DN 200's Beam vacuum: rupture disks 	To be discussed Done: All SSS equipped with rupture disks during LS1 (TE- VSC)
Interfaces	Prepare and approve interface specification	On-going

Current boundary conditions

- complete assembly (2 x 11T dipoles and 1 collimator) is acceptable, will be likely on the far right end
- A cryo-magnet assembly (1 x 11T dipole in its cryostat) shall be exchangeable (the collimator, and the other cryo-magnet assembly to remain in place)

Designation	Current L [mm]	Optimized L [mm]
End cover	154	154
Shrinking cylinder extension (w.r.t. end plate)	56	56
End plate (longitudinal limit of the active part of the magnet)	75	70
Collared coil assembly	5622	5622
End plate (longitudinal limit of the active part of the magnet)	75	70
Shrinking cylinder extension (w.r.t. end plate)	56	56
End cover	154	154
Cold mass length "C-plane" to "L-plane" (not including IC)	6192	6182

Two concepts under study

- HROCORTIC SALAD Integrated bus bars, all (M1, M2, and M3) inside the cold mass assembly
- Externally routed bus bars, for the lines M1 and M2 (quadrupoles, and spools)
- The integration of the bus bars is a challenge, and a detail design study is needed to confirm the conceptual design. There are good indications today that it will be possible
- In both cases, apply the solutions known from the past experience, as much as possible
 - The integration of a **second diode stack**, should it be needed for the protection, is also extremely challenging, in particular to make possible maintenance or repair work in situ. A preliminary study will be initiated in the next 2 weeks.

Possible bus bar routing – left of collimatory "Lyra side" Courtesy Ch.Y. Mucher

Another solution ...

Vacuum vessel design

- Engineering design of vacuum vessel cover on-going
- Driven by the displacements at the beam lines
- Stress analysis according to EN 13458 (European code for vacuum insulated cryostats)
- Detailed design starting now, since busbar routing seems feasible

