

SixTrack studies with DS collimators in nominal optics

R. Bruce, S. Redaelli, collimation team

Acknowledgement: B. Holzer, M. Schaumann

Introduction to DS collimators

- IR7 dispersion suppressor (DS) is the limiting location in terms of collimation cleaning inefficiency
 - Dominating losses from protons that have undergone single diffractive scattering in TCP.
 - Energy offset large enough to hit the aperture in the arc, with high dispersion, but not large enough delta and betatron amplitude to hit the other collimators
- In the experimental IRs, off-momentum collisional debris lost in the DS. Maybe less critical (for protons – may still be needed for ions!) – considering presently only IR7 DS
- In both cases, the installation of additional collimators in the DS, TCLD, after the point where the dispersion is rising, could intercept these losses
- IR7 DS collimators are also beneficial for ions
- More background: see talks in collimation review 2013

Integration and layout

- Most promising layout option
 - replace an existing main dipole with two short 11T dipoles
 - Warm collimator installed in between the magnets
 - See talks V. Parma, A. Bertarelli in 2013 collimation review
- Considering a magnetic length of 5.5m (M. Karpinen) and an active collimator length of up to 1m

MAD/SixTrack implementation of DS collimators

- To quantify cleaning gain, need to simulate cleaning with SixTrack
- Previous simulations done with other layout options (shifting several magnets by up to 3m – see e.g. TH5PFP008, PAC09)
- New implementation based on 11T dipole layout
- In MAD lattice, exchanging existing dipoles in cells 8 and 10 in IR7 (thanks to M. Schaumann and B. Holzer for input!)
 - Installation done using thick lenses, before Makethin
 - Mathematica script to automatically generate the MAD input file and twiss, given the names of the dipoles that should be exchanged and a nominal twiss file
 - Thin sequences with 11T dipoles and DS collimators for SixTrack input created both for nominal optics and for ATS

LHC Collimation

s (m)

SixTrack simulation campaign

- Cleaning with DS collimators should be studied SixTrack for
 - Nominal optics (this talk).
 - Possibility of installing DS collimators before HL era
 - ATS optics (A. Marsili)
- For nominal optics (beta*=55cm), study:
 - 0, 1 or 2 DS collimators installed
 - With a tungsten TCLD of 80cm or 1m
 - With relaxed or nominal settings
 - For B1 and B2
- In total 16 simulations but not all cases simulated
- Studying 7 TeV

Settings in sigma (3.5 um emittance)	Relaxed (20% larger gap than 2012)	nominal
TCP7	7.0	6.0
TCS7	10.3	7.0
TCLA7	13.0	10.0
TCLD	13.0	10.0
TCSG6	11.0	7.5
TCDQ6	11.6	8.0
ТСТ	13.2	8.3

20 600 20 800 19800 20 000 20200 20 400 s (m)

Losses as function of DS collimators

- Loss maps show:
 - TCLD in cell 8 decrease significantly the losses in cells 8-9.
 - TCLD in cell 10 decreases losses in cells 10-11 and in the rest of the ring
 - Both TCLDs are more efficient at 10 sigma than at 13 sigma
- To more easily compare different optics, and to quantify the gain of the DS collimators, compare the following quantities:
 - Global cold cleaning inefficiency (fraction of losses in cold regions)
 - Global warm cleaning inefficiency (fraction of losses in cold regions)
 - Highest local cold cleaning inefficiency

- Fraction of losses in the two "clusters" in the IR7 DS (CL1(8-9) and CL2(10-11))

Global inefficiency

- Clear reduction in global inefficiency – less losses in the whole ring! With 2 TCLDs:
 - Factor ~10 for relaxed settings
 - Factor ~20 for nominal settings

Highest cold local inefficiency

- With 2 TCLDs, the reduction is
 - Factor ~5 with relaxed settings
 - Factor ~10 with nominal settings
- Statistical error is ~20%

Local losses in the two "clusters" in the IR7 DS

cluster 1 H rel.

cluster 1 V rel.
cluster 2 H rel.

cluster 2 V rel.

-v- cluster 1 H nom. -o- cluster 1 V nom. -o- cluster 2 H nom.

cluster 2 V nom

- The TCLD in cell 8 acts on the first cluster. Not high enough momentum cut to shield cell 10
 - Up to 300 reduction of CL1 losses
- The TCLD in cell 10, where Dx is higher, shields cell 10 but also large parts of the rest of the ring

- Up to factor 500 reduction of CL2 losses

80cm vs 1m TCLD length

 No significant difference observed in the the reduction of losses between 80cm and 1m TCLD length

n.o. DS collimators

Conclusions

- DS collimators seem to be a very promising way of decreasing proton losses to cold magnets in the LHC.
- Present design proposal: assembly with warm DS collimator between 2 short 11T dipoles can replace existing long dipole
- MAD lattice with DS collimators in IR7 created, both for nominal optics and for ATS. Used for SixTrack input
- SixTrack simulations of cleaning in nominal optics show a very significant loss reduction in cold magnets from DS collimators
 - Gain factor 10-20 in global inefficiency, and even more in local losses in the IR7 DS
 - Results consistent with results from ATS simulations (A. Marsili) and previous studies with different layout (T. Weiler)
- Installing 2 DS collimators seems as a better option: shields the whole IR7 DS and reduced losses also in other parts of the ring.
- Decreasing the length of the TCLD from 1m to 80cm has no visible impact on the losses
- Detailed energy deposition studies needed to quantify gain in dose and quench margin – SixTrack output forwarded to FLUKA team (see A. Lechner in next talk)