

Update on the modelling of crystal channeling for FLUKA

P. Schoofs, F. Cerutti, A. Ferrari, G. Smirnov

Ref. : Monte Carlo modeling of crystal channeling at high energies Nuclear Instruments and Methods in Physics Research B 309 (2013) 115–119

Sep 20, 2013

Introduction

Description of the model

- Frame of reference
- Continuous potential
- Interactions in Channeling
- Volume effects
- ➤ Exit kick

Results

- 2D distributions Case study
- Benchmarking against UA9-H8 data

Conclusions

Introduction

• Why an implementation of channeling inside FLUKA ?

- Crystals are investigated as new possible solution for collimation @ CERN
- Energy deposition and tracking of secondaries need to be evaluated
- FLUKA is the Monte Carlo currently used to assess these values in the collimation system

How does it work ?

- Microscopic description avoiding the use of empirical parameters
- Crystals defined as a region of the FLUKA geometry layout in which
 - Particles can be channeled if their transverse energy is small enough
 - Follow channel curvature
 - Undergo reduced amount of interactions
 - Interactions are carried on using FLUKA models
 - Quasi-channeled particles can be reflected or captured

Presently, a standalone event generator has been developed and benchmarked. Integration into FLUKA not yet completed.

Frame of reference

- Crystal defined in FLUKA combinatorial geometry
 - Object situated in the laboratory
 - ➢ Region flagged as crystal → trigger channeling-related effects

Crystal planes defined inside crystal by 2 vectors

- ➤ A : along the channel direction
- ➤ B : perpendicular to A, giving the crystal planes orientation
- Vectors are independent from the region
 - Natural reproduction of miscut

Torsion

- Change in the channel orientation along B
- Change the radius of curvature proportional to excursion along B

(a)

(b)

Continuous Potential in a Crystal

1. Straight crystal

- Lindhard formalism
 - For small incoming angles relative to the crystal planes, successive interactions of the particle with the lattice plane are correlated.
 - Hence, we consider interactions with the plane as a whole
 - « Continuous » strings of atoms \rightarrow Continuous potential
- Moliere screening function
- Thermal vibrations
 - Average the cont. pot. over the gaussian thermal motion
 - RMS amplitude $u_T = 0.075$ Å at room temp.

2. Bent crystal

- > Centrifugal Potential $U_c(x) = -\frac{pv}{R}x$
- The effective potential barrier is reduced on the outer side
 - For a certain bending, the potential well does not exist anymore
 - \rightarrow critical radius
- Effective Potential

$$U_e(x) = U_{pl}\left(x + \frac{d_p}{2}, u_T\right) + U_{pl}\left(x - \frac{d_p}{2}, u_t\right) + U_c(x)$$

Continuous Potential in a Crystal

3. Channeling condition

Energy of the transverse motion

$$E_x = \frac{p_x^2 c^2}{2E} + U_e(x) \approx \frac{pv}{2} \theta_x^2 + U_e(x)$$

- Potential Energy ?
 - depends on the initial transverse position
 - random variable, uniform over $\left[-\frac{d_p}{2}, \frac{d_p}{2}\right]$
- Particle is channeled if :

$$E_x \le U_e\left(\frac{d_p}{2}\right)$$

- > Maximal θ_x angle allowing channeling in a given crystal at a given energy
 - = critical angle

Sep 20, 2013

$$\theta_c = \sqrt{\frac{2U_e(d_p/2)}{pv}}$$

Interactions in channeling

1. Oscillations

- Particle oscillate between planes
 - Approx. : Harmonic potential
 - \rightarrow Sinusoidal oscillations
- Solution Solution x_m depends on E_x

2. Coulomb scattering

- ▶ CH particles \rightarrow single-scattering mode
- Transverse energy modified by interactions
- According to x_m , interaction with nuclei can be rejected
 - Classical view : particle never comes closer to the lattice than $r_f = \left(\frac{d_p}{2} - x_m\right)$
 - Quantum form factor relating the momentum transfer and impact parameter
- Electrons taken into account through the Fano correction

→ Dechanneling if
$$E_x$$
 goes above $U_e\left(\frac{d_p}{2}\right)$

 $F_{\rm f}(qr_{\rm f}) = 3 \frac{\left| \sin\left(\frac{qr_{\rm f}}{\hbar}\right) - \frac{qr_{\rm f}}{\hbar} \cos\left(\frac{qr_{\rm f}}{\hbar}\right) \right|}{\left(\frac{qr_{\rm f}}{\hbar}\right)^3}$

Interactions in Channeling

2. Nuclear Interactions

- Scaling factor to the cross sections
- = average nuclei density
- Nuclear density in the channel :

$$P_n(x) = \frac{d_p}{\sqrt{2\pi u_t^2}} \exp\left(-\frac{(d_p/2 - x)^2}{2u_t^2}\right)$$

Folding of the density over the sine trajectory

$$F_{n} = \frac{d_{p}}{\sqrt{2\pi u_{t}^{2}}} \frac{1}{\pi} \int_{0}^{\pi} \exp\left(-\frac{(d_{p}/2 - x_{m}\sin(\varphi))^{2}}{2u_{t}^{2}}\right) d\varphi$$

- Typical scaling factors range from 0 to 2.5 for individual particles
- Reduction rates of the order of 12 For 400GeV/c p^+ , R=13m, $\sigma_{x'}$ = 10 urad

Volume effects

1. Quasi-Channeling

- Non channeled particles
- ➢ Crystal bending → Tangency at some point
- Single-scattering mode

2. Volume capture

- ▶ Tangency region begins when $\theta_x \le \theta_c$
 - $\succ \quad E_x \ge U_e(d_p/2)$
- > Transverse energy E_x associated with the quasichanneled particle
- \succ E_x can be modified by Coulomb scatterings

▶ **IF** :
$$E_x$$
 drops below $U_e\left(\frac{d_p}{2}\right) \rightarrow$ CAPTURE

3. Volume reflection

- IF NOT : Particle escapes the region and is reflected
- One-time kick towards the outer side of the bend

$$heta_{
m v.r.} = -rac{\pi}{2} heta_c \left(1-rac{2R_c}{R}
ight)$$
 [M. Bondarenco, arXiv:091

1.0107v3, 2010]

Possible Channeling $|\theta_i| \leq \theta_c$

tangency region

ECOLE POLYTECHNIQUE Fédérale de Lausanne

- Exception : non-channeled particles with $|\theta_i| \le \theta_c$ (Thanks to Daniele for pointing this out !)
 - VR kick gradually increasing

A particle exits channeling mode when

- it is dechanneled or
- it exits the crystal region of the geometry
- Angular spread at exit ?
 - Natural angle of the oscillating particle
 - Arc sine distribution
 - Width of the distribution depending on the oscillation amplitude of the particle, itself depending on the transverse energy value
 - Results in a steep exit distribution
 - ▶ Gaussian angle with $\sigma = \theta_c$
 - Provides satisfying results wrt the experimental data
 - BUT : parameter-related (even though not an entirely arbitrary parameter)
 - Currently the adopted method

Qualitative comparison of angular scan with H8-RD22

- Distribution of particles against crystal orientation and hor. outgoing angle wrt crystal orientation (out-cr)
- > Strip crystal in 400 GeV proton-beam divergence $\sigma_{x'}$ =8 urad

Using the hor. Kick (out-in) we have

Sep 20, 2013

- Other examples:
 - \succ X divergence = 0

 With strong torsion (10urad/m), no hor. Divergence, σ_y=1 mm σ_y=10 urad

EN 🕵 S T I

P. Schoofs, Update on the modelling of CC for FLUK**Horizontal deflection angle [\murad]**

• UA9-H8:

- Single-pass experiment
- Crystal placed in the center
- ➤ 5 silicon strip detectors around
- Track reconstruction : up- and downstream
 - \rightarrow yields deflection angles

(Preliminary) data analysis:

- Determination of the crystal torsion
- Crystal efficiency after torsion compensation

courtesy M. Pesaresi

Sep 20, 2013

Benchmarking against UA9-H8 data : channeling orientation

- 2 different types of crystals
 - Quasi-Mosaic
 - Strip
- Bending angle

Run 889

0.030

0.025

0.020

0.015

0.010

0.005

0.000

-50

Sep 20, 2013

Frequency

- ~50 urad for LHC
- ~100-200 urad for the SPS
- LHC strip crystal (STF 71 R.1191)
- SPS strip crystal (STF 50 R.889)
- LHC QM crystal (QMP 28 R.1028)

50

0

100

Horizontal kick [urad]

150

- SPS strip crystal (STF 50 R.892)
 - (NB: Log scale to better appreciate VC)
 - Overall good agreement

Semi-classical microscopic model of channeling

- Description of dechanneling, volume reflection and volume capture
 - Takes into account torsion and miscut
- Uses FLUKA interaction models
- Good agreement with results from UA9-H8 experiment
 - for the channeling peak description
 - for the dechanneling distribution
 - volume capture rate
- ≻ But:
 - Slight underestimation of the dechanneling rate
 - Exit kick determination still an open question
- > In the future :
 - Finish implementation inside core FLUKA
 - EMD ? Altered ionization in channeling ?
 - Longer term : negatively charged particles, axial channeling,...

Acknowledgement to the UA9 collaboration !

16

Thanks for your attention !

Run	CHANNEI	ING RATE	DECHANNELING RATE		
	Exp.	Sim.	Exp.	Sim.	
608	29.04(15)	29.15(14)	3.31(6)	2.29(5)	
630	25.12(10)	28.16(14)	8.05(7)	2.06(4)	
889	29.04(6)	31.35(15)	3.65(2)	2.67(5)	
899	24.99(3)	31.41(15)	14.7(1)	9.20(9)	
1012	32.54(6)	37.06(15)	4.54(28)	2.27(5)	
1028	36.87(6)	35.44(15)	9.96(39)	5.34(7)	
1191	39.58(6)	37.03(15)	2.78(20)	2.80(5)	
1240	50.73(3)	47.86(16)	3.49(22)	3.98(6)	

Run	CHANNELING PEAK				VR/AM peak			
	Experiment		Simulation		Experiment		Simulation	
	Mean	Sigma	Mean	Sigma	Mean	Sigma	Mean	Sigma
608	35.53(3)	7.27(2)	34.83(6)	10.17(4)	-1.06(3)	10.7(1)	-2.28(5)	13.58(4)
630	141.8(1)	11.3(1)	142.0(1)	10.68(4)	-1.96(3)	8.40(2)	-3.75(3)	8.09(2)
889	138.5(1)	9.26(2)	137.7(1)	10.63(4)	-8.23(2)	10.2(1)	-9.37(4)	9.32(3)
899	36.64(1)	7.38(1)	34.86(4)	9.97(4)	-5.15(1)	9.01(1)	-6.12(4)	10.7(1)
1012	50.83(2)	9.14(2)	50.82(6)	10.98(4)	-4.21(2)	9.00(1)	-3.18(4)	9.32(3)
1028	41.20(2)	7.01(1)	41.84(5)	9.79(4)	-4.16(2)	8.63(1)	-1.03(5)	11.7(1)
1191	61.26(2)	8.81(1)	60.18(6)	10.90(4)	-6.39(2)	9.97(1)	-3.32(4)	9.46(3)
1240	54.50(2)	8.55(1)	54.05(5)	10.56(3)	-5.61(2)	9.09(1)	-6.37(5)	10.6(1)

PROGRAM MAIN

Sep 20, 2013

EN 🎉

SΤΙ

EN 🕅

SΤ

