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® Hollow electron-lens studies as an option to improve the LHC collimation
have been part of US-LARP collaboration since 2009:
- Rich program of beam tests at the Tevatron,

- Studies of beam tail scraper and of improved cleaning;
- Characterization of electron lens parameters for the LHC at 7 TeV.

@ After the Tevatron shut-down, the hollow e-lens hardware has become
available for a possible usage at CERN!
- We must define a strategy to make the best use of this hardware.

@ This review was organized to collect the required information to decide
on an optimum strategy, taking into account the present uncertainties.
- Assessment of real need might have to wait for the experience at 6.5-7 TeV...

® Key points to be addressed:
(1) Do we need this type of device at the LHC?
(2) What is the best way to make use of the Tevatron hardware?

@® This review if focused on the item (2)
- Ongoing work on (1) required understanding of minimum lifetime,
quench limits, collimator settings scenarios for 7 TeV cleaning, etc...
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® A hollow electron beam runs parallel to the proton beam
- Halo particles see a field that depends on (Ax,Ay) plane
- Beam core not affected!
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® A hollow electron beam runs parallel to the proton beam

- Halo particles see a field that depends on (Ax,Ay) plane
- Beam core not affected!

® Adjusting the e-beam parameter: control diffusion speed
- Drives halo patrticles unstable by enhancing (even small)
non-linearities of the machine,
- Can control diffusion speed for a safe operation;
- Created a hole around the beam core (depleted tails).
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® A hollow electron beam runs parallel to the proton beam
- Halo particles see a field that depends on (Ax,Ay) plane
- Beam core not affected!

® Adjusting the e-beam parameter: control diffusion speed
- Drives halo patrticles unstable by enhancing (even small)
non-linearities of the machine,
- Can control diffusion speed for a safe operation;
- Created a hole around the beam core (depleted tails).
@ This is an ideal scraper that is robust by definition.

- In fact, it does not absorb any particle.
® Remove halo particles below the primary collimator cut.
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- In fact, it does not absorb any particle.
: | ® Remove halo particles below the primary collimator cut.
: | ® Conceptual integration in the LHC collimation system:
| ’ l ' - The halo cleaning is done by the standard collimators.
P - - (Small) effect on cleaning by tuning the impact parameter
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Beam transmission from start of ramp for a few random fills
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“Tight” collimator settings
TCP gaps in mm as for 7TeV
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“Tight” collimator settings
TCP gaps in mm as for 7TeV

2011: losses during cycle dominated
by the setup of collisions!



Beam intensity B1

0.9%5~

Beam transmission from start of ramp for a few random fills

Losses during the LHC cycle

2011
2012

Squeeze

Squeeze
and adjust

— 15 during (ILUNT LRVAL) — e

~— il 2216 during [ILUNTERVAL) C— T —
18 2217 during (MLUNTERVAL) —
Fill 2218 during (MLUNTERVAL) o

Fill 2219 during (MLUNTERVAL) S— —

~ Fill 2627 during [(MLUNTERVAL)
Fill 2628 during (MLUNTERVAL)
Fill 2629 during (MLUNTERVAL)

Fill 3265 during (MLUNTERVAL)
~—— Fill 3266 during [MLUNTERVAL)

L T L3 T
1000 2000 3000 4000
Time from interval star [s)

S. Redaelli, ColUSM, 09-11-2012

N4,
Major change for 2012:
“Tight” collimator settings

TCP gaps in mm as for 7TeV

2011: losses during cycle dominated
by the setup of collisions!
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more sensitive to orbit jitters
(squeeze), increased impedance.
But smaller beta™!!
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TCP gaps in mm as for 7TeV

2011: losses during cycle dominated
by the setup of collisions!

2012: Beam losses at the ramp end,
more sensitive to orbit jitters
(squeeze), increased impedance.
But smaller beta™!!

The 2012 losses are likely more
representative of the 7 TeV OP.
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Major change for 2012:
“Tight” collimator settings

TCP gaps in mm as for 7TeV

2011: losses during cycle dominated
by the setup of collisions!

2012: Beam losses at the ramp end,
more sensitive to orbit jitters
(squeeze), increased impedance.
But smaller beta™!!

The 2012 losses are likely more
representative of the 7 TeV OP.
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Major change for 2012:
“Tight” collimator settings
TCP gaps in mm as for 7TeV

2011: losses during cycle dominated
by the setup of collisions!

2012: Beam losses at the ramp end,
more sensitive to orbit jitters
(squeeze), increased impedance.
But smaller beta™!!

The 2012 losses are likely more
representative of the 7 TeV OP.
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Losses during the LHC cycle

Min. BCT Lifetime

N4,
Major change for 2012:
“Tight” collimator settings

TCP gaps in mm as for 7TeV

2011: losses during cycle dominated
by the setup of collisions!

2012: Beam losses at the ramp end,
more sensitive to orbit jitters
(squeeze), increased impedance.
But smaller beta™!!

The 2012 losses are likely more
representative of the 7 TeV OP.
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Beam lifetime during OP cycle OO

CERN
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Beam lifetime during OP cycle

FBCT Average Beam Lifetime in h Updatec: 02:46:19
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' rag ifetime i pdatect 02:46:19
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Couple of -1
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What could be cured/improved by scraping?

Ramp losses —> Loss profile in time can be optimized. Not critical though.

Squeeze losses = Can be cured by removing correlation to orbit drifts!

Instabilities —> Not obvious help from hollow e-lens.

Collision losses = Possible mitigation if tails are removed before (to be demonstrated).

S. Redaelli, ColUSM, 09-11-2012 9
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Orbit and losses during squeeze \\W

-

Example from “tight” setting tests in 2011

W
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Orbit and losses during squeeze (>

Example from “tight” setting tests in 2011
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Orbit and losses during squeeze (>

v CERN

Example from “tight” setting tests in 2011 " TCP.CEL7.B |
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Another requirement \\W

- : ) . -
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Scraping at the LHC o

’
g CERN

® Cases for scraping
- Control speed of losses in all operational phases (ramp, squeeze, adjust);
- Remove beam tails before going in collisions to reduce loss spikes;
- Keep the halo “clean” (reduced population) during physics data taking;
- Machine protection issues for single-turn failures: losses reduced If tails
are cleaner (crucial for operation with crab-cavities).
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® Cases for scraping
- Control speed of losses in all operational phases (ramp, squeeze, adjust);
- Remove beam tails before going in collisions to reduce loss spikes;
- Keep the halo “clean” (reduced population) during physics data taking;
- Machine protection issues for single-turn failures: losses reduced If tails
are cleaner (crucial for operation with crab-cavities).

® When in the cycle beam scraping can be effective?
- Before injection, at SPS extraction, or in the LHC at injection plateau.
- During ramp. During or before the squeeze.
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Scraping at the LHC D
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' CERN

® Cases for scraping
- Control speed of losses in all operational phases (ramp, squeeze, adjust);
- Remove beam tails before going in collisions to reduce loss spikes;
- Keep the halo “clean” (reduced population) during physics data taking;
- Machine protection issues for single-turn failures: losses reduced If tails
are cleaner (crucial for operation with crab-cavities).

® When in the cycle beam scraping can be effective?
- Before injection, at SPS extraction, or in the LHC at injection plateau.
- During ramp. During or before the squeeze.

® No dedicated scraping devices exist at the LHC.
- Layout slots foreseen in IR3/7, but no suitable design was found (our robust

primary collimators were considered the best option).
- Scraping relies on cutting the beam with the primary collimators:
Limited control of loss speed close to the core. Almost excluded at top intensity.
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Scraping at the LHC D
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® Cases for scraping
- Control speed of losses in all operational phases (ramp, squeeze, adjust);
- Remove beam tails before going in collisions to reduce loss spikes;
- Keep the halo “clean” (reduced population) during physics data taking;
- Machine protection issues for single-turn failures: losses reduced If tails
are cleaner (crucial for operation with crab-cavities).

® When in the cycle beam scraping can be effective?
- Before injection, at SPS extraction, or in the LHC at injection plateau.
- During ramp. During or before the squeeze.

® No dedicated scraping devices exist at the LHC.
- Layout slots foreseen in IR3/7, but no suitable design was found (our robust

primary collimators were considered the best option).
- Scraping relies on cutting the beam with the primary collimators:
Limited control of loss speed close to the core. Almost excluded at top intensity.

® Can the hollow e-lens provide the required functionality?
- Tevatron: mainly used in collision (large NL’s). Limited tests with single beams.
- Ramp and squeeze not addressed by beam tests.
- Parameters of present hardware not optimized for 7 TeV.
= more beam tests would help answering this question.
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Scraping at injection

Recent MD (cour. G.Valentino+Inj team)
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Scraping at injection )

-

Recent MD (cour. G.Valentino+Inj team) Scraping of full injected beam (1380b) on May 15t, 2012
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LHC Collimation

Scraping at injection \\

Recent MD (cour. G.Valentino+Inj team) Scraping of full injected beam (1380b) on May 15t, 2012

TCP gaps
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i
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Injection Scraping and ramp préﬁaration

—_— —

> €

® Two scraping tests:
SPS before extraction.
LHC flat-bottom.

@ Scraping worked well but it did
NOT cure the ramp losses!

@ Caveat: very scarce beam
experience! Only 1 test!
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Recent MD (cour. G.Valentino+Inj team)

Scraping at injection

Scraping of full injected beam (1380b) on May 15t, 2012
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® Two scraping tests:

SPS before extraction.
LHC flat-bottom. =
@ Scraping worked well but it did
NOT cure the ramp losses! :
@ Caveat: very scarce beam
experience! Only 1 test!
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Scraping and ramp preparation > <

Intensity transmission during the ramp
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Scraping at top energy (1)
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LHC Collimation

® One test done in 2011 at the end of a
physics fill with 1400b at 3.5 TeV

® The scraping took more than 30 minutes,

limited by high loss spikes.

® Can we do it at 7 TeV with reduced margins

for quench?

® TCP smallest gap limited by impedance?
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® Beam scraping with squeezed beams
done in 2012 for diffusion studies.

® Scaling of losses measured with single
bunches show that it will be challenging
to do that at every fill!

@ Also note that there are indications of
blow-up during the squeeze: scraping
during ramp might not be enough.
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LHC Collimation

Roughly scales to >1Gy/s for a
physics fill with 1400 bunches
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LHC Collimation

Critical questions &

'
v CERN

® Do we need beam scraping at the LHC? When?
- 2012: examples of cases when it would be useful! Extrapolations to 7 TeV?
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® Do we need beam scraping at the LHC? When?
- 2012: examples of cases when it would be useful! Extrapolations to 7 TeV?

® Can the hollow e-lens work in principle at the LHC?

- Complex beam dynamics: instability of halo particles by exciting non-linearities (NL’s).

- Tevatron experience position, but strong NL’s and worse field quality than the LHC.
- At the LHC, we needed it also BEFORE collision when NL’s are very small.
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® Can the Tevatron hollow e-lens can be used at CERN?
- Compatibility with the installation in the LHC.
- Compatibility with the installation in the SPS.
- Comparative assessment (pro’s and con’s) of both options.
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- Compatibility with the installation in the LHC.
- Compatibility with the installation in the SPS.
- Comparative assessment (pro’s and con’s) of both options.

® What are viable alternatives to this methods?

- “There must be many other ways to scrape the beam!”
- In practice, losses are critical at the LHC due to high intensity energies.
- Vital to ensure minimum blow-up of the beam core.
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Critical questions o
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v CERN

® Do we need beam scraping at the LHC? When?
- 2012: examples of cases when it would be useful! Extrapolations to 7 TeV?

® Can the hollow e-lens work in principle at the LHC?

- Complex beam dynamics: instability of halo particles by exciting non-linearities (NL’s).

- Tevatron experience position, but strong NL’s and worse field quality than the LHC.
- At the LHC, we needed it also BEFORE collision when NL’s are very small.

® Can the Tevatron hollow e-lens can be used at CERN?
- Compatibility with the installation in the LHC.
- Compatibility with the installation in the SPS.
- Comparative assessment (pro’s and con’s) of both options.

® What are viable alternatives to this methods?

- “There must be many other ways to scrape the beam!”
- In practice, losses are critical at the LHC due to high intensity energies.
- Vital to ensure minimum blow-up of the beam core.

® What beam tests and studies are needed?

@ Are there other possible functionalities for the electron lens at the LHC?

- Used as abort gap cleaner in the Tevatron.

- Non-hollow beams conceived beam-beam tune shift compensation (Tevatron, RHIC)
- Certainly useful for diagnostics, depending on achievable time structure.
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'
v CERN

If this method is needed at the LHC, we must aim for an installation during LS2.
This means having 2 hollow e-lens devices ready for the LHC.
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If this method is needed at the LHC, we must aim for an installation during LS2.
This means having 2 hollow e-lens devices ready for the LHC.

Different scenarios must be comparatively assessed:
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If this method is needed at the LHC, we must aim for an installation during LS2.
This means having 2 hollow e-lens devices ready for the LHC.

Different scenarios must be comparatively assessed:

1. Installation in LS1 in the LHC for prototype beam tests in 2015
- Too late for that now!

S. Redaelli, ColUSM, 09-11-2012 18



== LHC Collimation

Possible timelines )

If this method is needed at the LHC, we must aim for an installation during LS2.
This means having 2 hollow e-lens devices ready for the LHC.

Different scenarios must be comparatively assessed:

1. Installation in LS1 in the LHC for prototype beam tests in 2015
- Too late for that now!

2. Installation in the SPS in LS1, beam tests in 2015, followed by installation
in the LHC 2015 winter stop.

- Can advance preparatory works in the LHC during LS17?
- What is the added value of beam tests in the SPS at 270 GeV?
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2. Installation in the SPS in LS1, beam tests in 2015, followed by installation
in the LHC 2015 winter stop.
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3. Installation and beam tests with Tevatron hardware in the SPS only,
direct production of two devices for the LHC
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Possible timelines )

CERN

If this method is needed at the LHC, we must aim for an installation during LS2.
This means having 2 hollow e-lens devices ready for the LHC.

Different scenarios must be comparatively assessed:

1. Installation in LS1 in the LHC for prototype beam tests in 2015
- Too late for that now!
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If this method is needed at the LHC, we must aim for an installation during LS2.
This means having 2 hollow e-lens devices ready for the LHC.

Different scenarios must be comparatively assessed:

1. Installation in LS1 in the LHC for prototype beam tests in 2015
- Too late for that now!

2. Installation in the SPS in LS1, beam tests in 2015, followed by installation
in the LHC 2015 winter stop.

- Can advance preparatory works in the LHC during LS17?
- What is the added value of beam tests in the SPS at 270 GeV?

3. Installation and beam tests with Tevatron hardware in the SPS only,
direct production of two devices for the LHC

4. No beam experience at CERN with existing hardware, direct production

for the LHC
- To what extent can we rely on the beam experience at the Tevatron, with very

different conditions?
For all cases, we must take a decision early in 2013.
If the Tevatron lens works well, can it be keep it in the LHC and build 1 only?
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& A number cases when scraping could be beneficial were identified:
New 2012 experience with “tight” collimator settings taken into account.
Most challenging: losses during squeeze from fast orbit drifts.
Clearly, it could be useful also for ramp and collisions.

™ More complete studies will tell if improved scraping is really required.

We are putting together the 2012 data taking into account the relevant aspects.
The experience at ~7 TeV will be needed to take the final choice.

™ Scraping with the present LHC layout is challenging.

The very limited beam experience suggests that scraping at injection is not useful.

Scraping at top energy with full intensity is time consuming and very challenging at 7TeV
No obvious solutions for stable beams (required for using crab cavities in HL-LHC)

& On paper, the hollow e-lens concept provides what is needed!

Can we conclude today that this is also true in practice??
What is the added value of tests at the SPS vs Tevatron experience?

™ Need to define appropriate strategy and an action list by early 2013!
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LHC Collimation

Intensity reach from collimation cleaning \\

The performance reach does not only depend on the collimation cleaning!

Minimum (assumed)
beam lifetime

Quench limit of
SC magnets

Collimation cleaning at
limiting cold location

LHC total intensity reach
from collimation:
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The performance reach does not only depend on the collimation cleaning!

Minimum (assumed)
beam lifetime

LHC total intensity reach
from collimation:

Quench limit of
SC magnets

Collimation cleaning at
limiting cold location

Preliminary 7 TeV performance
estimate based on ACHIEVED loss
rates at 3.5 TeV
(500 kW for protons, 27 kW for ions)

Protons: > 1.5 x nominal
—> |lons: 5-25 x nominal
lons (L debris) closer to limit!
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Intensity reach from collimation cleaning >

’
v CERN

The performance reach does not only depend on the collimation cleaning!

Minimum (assumed)
beam lifetime

Quench limit of
SC magnets

Collimation cleaning at
limiting cold location

LHC total intensity reach
from collimation:

Preliminary 7 TeV performance Protons: > 1.5 x nominal
estimate based on ACHIEVED loss .
—> |lons: 5-25 x nominal

rates at 3.5 TeV
(500 kW for protons, 27 kW for ions) lons (L debris) closer to limit!

Caveats/assumptions:
- So far, we did NOT quench — Figures for Ryare conservative
- It is assumed that the lifetime will be the same at larger E and smaller 8
- The losses were achieved only during short times =1 s
- There are uncertainties on quench limit and cleaning performance at larger E
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Performance reach depends on:

- Collimation cleaning inefficiency

- Total beam intensity;

- Peak minimum lifetime;

- Quench limit of magnets;
- Loss dilution Iength.

Our design

specification:

S. Redaelli, ColUSM, 09-11-2012
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Quench limit,
e.g. 8eb6 p/m/s

Design loss assumptions
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This figures
are being
revised based
on the beam
experience
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Performance reach depends on: \

- Collimation cleaning inefficiency
- Total beam intensity;

- Peak minimum lifetime;

- Quench limit of magnets;

- Loss dilution Iength.

Quench limit,
e.g. 8eb p/m/s

l im
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/ ,

Assumed input

Minimum beam
lifetime (peak loss):

Design loss assumptions

LHC Collimation

Factor for BLM
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margin, e.g. 0.33 shower dilution
from FLUKA,
/ eg.3.5
v

?

BIM ) Fd(/utiun

imperfect

o

Factor for
imperfections,
e.g.6

R. Assmann

Our design Mode T T Rioss Pioss
specification: (5] (] [v/4] TV]
Injection | cont. | 1.0 | 0.8 x 10" 6
10 0.1 | 8.6x 10" | 63
Ramp A 0.006 | 1.5 x 10*3 | 1200
Collision | cont. 1.0 | 0.8 x 10! 097
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This figures
are being
revised based
on the beam
experience
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