Preliminary field quality
and quench margins

B. Auchmann, TE-MSC
on behalf of the CERN-FNAL collaboration
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@ Transfer Function #

< A discrepancy between MB and 11 T is inevitable:

O More turns than MB (56 vs. 40) = 11 T dipole is stronger low
field.
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o Remedy: Trim1 Courtesy of H. Thiessen

I No space for correctors (~ 1 m MCBC/MCBY needed).
1 300 A trim power converter.
Preferred: monopolar to avoid voltage peaks that perturb QPS.



Coil and Yoke
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%« Coil geometric multipoles < 1 unit @ 17 mm.

“* Yoke design

0 The cut-outs on top of the aperture reduce the b3 variation
by 4.7 units as compared to a circular shape.

! The holes in the yoke reduce the b3 variation by 2.4 units.

| The two holes in the yoke insert reduce the b2 variation
from 16 to 12 units.

1 Remedy for b2: thinner collars are being studied.
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3-D Field Quality

< 3-D integrated harmonics vs. 2-D harmonics @ /nom

I Optimized 3-D coil design.

I Extending the yoke over the ends reduces b2!

I Need to control winding accuracy.
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@m Persistent Currents #

< After the ramp from the pre-cycle reset current Imin = 100 A to
injection current 757 A, the change of ramp-direction has not
flipped the magnetization in the entire coil.

“* In this regime, the impact of persistent currents on field quality
is highly non-linear w.r.t. filament size and depends strongly on
the pre-cycle reset current.
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Figure 3: Transfer function with (red) and without Figure 4: Persistent-current-induced coil magnetization
(blue) persistent current effect. at injection level, | = 757 A.
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@m Sextupole Compensation _#

/

“ Passive compensation schemes by means of SC strands or
ferromagnetic shims are being explored.

» Compensation by SC strands is efficient once the change of
ramp direction has sufficiently penetrated the coil.

Ferromagnetic shims can shift the sextupole at low fields.

The passive compensation reduces the aperture diam. by 4
mm.
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Figure 5: Impact of passive compensation measureson  Figure 6: 4 sectors with two rows of passive strands,
the sextupole component. and 4 ferromagnetic shims near the mid-plane.
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< Including
0 Persistent currents with Imin = 100 A,
Deff = 55 pm.
I Skew harmonics due to cryostat.

0 3-D return and lead ends with
11 cm yoke cutback.

The 3-D electromagnetic model of coil and yoke. Layer-
jump, block transitions, and leads are visible in the coil.

October 4, 2011

Best-Guess Error table
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5.5 m 11 T Dipole Error Table
Inom Stdev

linj
BO -0.758
B/l -1.001
Lmag 5300
b2 -0.80
b3 41.33
b4 0.09
b5 6.90
b6 0.01
b7 -0.10
b8 0.00
b9 1.31
bl0 0.00
bl1l 0.33
b12 0.00
b13 0.00
al 0.87
a2 -0.02
a3 -0.11
a4 0.00
a5 0.09
a6 0.00
a7 0.03
a8 0.00
a9 0.00
alo 0.00
all 0.00
al2 0.00
al3 0.00

-11.217
-0.947
5300
-14.41
5.20
-0.45
0.51
-0.02
0.10
0.00
0.94
0.00
0.43
0.00
0.00
4.02
-0.26
-0.08
-0.01
0.09
0.00
0.03
0.00
0.00
0.00
0.00
0.00
0.00

1.93
1.24
0.60
0.31
0.18
0.11
0.06
0.03
0.01
0.01

2.87
1.66
1.00
0.64
0.38
0.20
0.09
0.05
0.03
0.02
0.01
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@ Cable Eddy Currents 1/2 '{z:

Dominant effects in cable without core\ i~
[ Inter-filament coupling negligible '
w.r.t. inter-strand coupling.

I Cross-over resistance Rc defines
dominant mode.

Rc varies by orders of magnitude.
0 HFDA measurements: 4 - 500 pQ.[8]
I MSUT estimates: 1.2 pQ. Called it “Eddy-Current Maching7]
I HQ calculations: 0.4 - 6 pQ.

Reproducibility is an issue.

Decay and Snap-back

[ Interplay of boundary-induced coupling currents and
strand magnetization.

I BICCS are ISCCs on large loops,with long time constants.



@m Cable Eddy Currents 2/2: 11 T '{z:

<« ISCCs in 11 T magnet

0 Based on Rc = 0.4 uQ we give presumably worst-case field
quality for the 11-T dipole.

I “Field advance” of ~ 4% due to ISCCs clearly visible
in transfer function.
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“* Probably need a cored cable to increase Rc.

< Need to measure snap-back at injection with
and without cored cable.



@ Field Quality Requirements #

< Beam-dynamics boundary conditions
see talk by B. Holzer:
1 B1 matches MB.

Ul |b3| below 20 units, correctable by spool-piece
correctors.

b2| below 16 units.
b5| below 5 units.

1

1
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|l to be confirmed by B. Holzer for updated error tables.
< We can deliver with

U trim power converter,

|l part-compensation in coil geometry,

! reduction of filament diameter,

I passive persistent-current compensation,

I adapted precycle (trim power converter),

I and cored cable.



@m Magnet Protection #

KX Design goals: 2x 125 nm Kapton

I Max. 400 K (to be discussed).
I Redundant heater systems.
I Robust (enough) detection thresholds.

<« Challenge:

Il Large temperature margin
in outer layer.
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Margin to quench (%)
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Margins to Quench

Margin on loadline

Strand enthalpy margin

Temperature margin (K)
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Enthalpy Margin Cable 2 (mJ/em®)
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Cable enthalpy margin
with resin
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