

Preliminary field quality and quench margins

B. Auchmann, TE-MSC on behalf of the CERN-FNAL collaboration

Transfer Function

- A discrepancy between MB and 11 T is inevitable: *
 - More turns than MB (56 vs. 40) = 11 T dipole is stronger low 0 field.

Remedy: *

- No space for correctors (~ 1 m MCBC/MCBY needed).
- 300 A trim power converter. Preferred: monopolar to avoid voltage peaks that perturb QPS.

Coil and Yoke

Coil geometric multipoles < 1 unit @ 17 mm.</p>

* Yoke design

- The cut-outs on top of the aperture reduce the *b*3 variation by 4.7 units as compared to a circular shape.
- **The holes in the yoke reduce the** *b***3 variation by 2.4 units.**
- The two holes in the yoke insert reduce the b2 variation from 16 to 12 units.
- **Remedy for b2: thinner collars are being studied.**

3-D Field Quality

***** 3-D integrated harmonics vs. 2-D harmonics @ Inom

- Optimized 3-D coil design.
- **Extending the yoke over the ends reduces b2!**
- Need to control winding accuracy.

Persistent Currents

- * After the ramp from the pre-cycle reset current Imin = 100 A to injection current 757 A, the change of ramp-direction has not flipped the magnetization in the entire coil.
- * In this regime, the impact of persistent currents on field quality is highly non-linear w.r.t. filament size and depends strongly on the pre-cycle reset current.

Figure 3: Transfer function with (red) and without (blue) persistent current effect.

Figure 4: Persistent-current-induced coil magnetization at injection level, I = 757 A.

May 10, 2012

Sextupole Compensation

- Passive compensation schemes by means of SC strands or ferromagnetic shims are being explored.
- * Compensation by SC strands is efficient once the change of ramp direction has sufficiently penetrated the coil.
- ***** Ferromagnetic shims can shift the sextupole at low fields.
- The passive compensation reduces the aperture diam. by 4 mm.

Figure 5: Impact of passive compensation measures on the sextupole component.

Figure 6: 4 sectors with two rows of passive strands, and 4 ferromagnetic shims near the mid-plane.

May 10, 2012

Best-Guess Error table

	5.5 m 11	. T Dipo	le Error	Table
* Including		linj	Inom	Stdev
 Persistent currents with Imin = 100 A, 	B0	-0.758	-11.217	JLUEV
Deff = 55 μm.	B/I	-1.001	-0.947	
-	Lmag	5300	5300	
Skew harmonics due to cryostat.	b2	-0.80	-14.41	1.9
3-D return and lead ends with	b3	41.33	5.20	1.2
	b4	0.09	-0.45	0.6
11 cm yoke cutback.	b5	6.90	0.51	0.3
	b6	0.01	-0.02	0.1
	b7	-0.10	0.10	0.1
	b8	0.00	0.00	0.0
	b9	1.31	0.94	0.0
	b10	0.00	0.00	0.0
	b11	0.33	0.43	0.0
	b12	0.00	0.00	
	b13	0.00	0.00	
	al	0.87	4.02	2.8
	a2	-0.02	-0.26	1.6
	a3	-0.11	-0.08	1.0
	a4	0.00	-0.01	0.6
	a5	0.09	0.09	0.3
	a6	0.00	0.00	0.2
	a7	0.03	0.03	0.0
	a8	0.00	0.00	0.0
	a9	0.00	0.00	0.0
The 3-D electromagnetic model of coil and voke. Laver-	a10	0.00	0.00	0.0

The 3-D electromagnetic model of coil and yoke. Layerjump, block transitions, and leads are visible in the coil.

	linj	Inom	Stdev
B0	-0.758	-11.217	
B/I	-1.001	-0.947	
Lmag	5300	5300	
b2	-0.80	-14.41	1.93
b3	41.33	5.20	1.24
b4	0.09	-0.45	0.60
b5	6.90	0.51	0.31
b6	0.01	-0.02	0.18
b7	-0.10	0.10	0.11
b8	0.00	0.00	0.06
b9	1.31	0.94	0.03
b10	0.00	0.00	0.01
b11	0.33	0.43	0.01
b12	0.00	0.00	
b13	0.00	0.00	
al	0.87	4.02	2.87
a2	-0.02	-0.26	1.66
a3	-0.11	-0.08	1.00
a4	0.00	-0.01	0.64
a5	0.09	0.09	0.38
a6	0.00	0.00	0.20
a7	0.03	0.03	0.09
a8	0.00	0.00	0.05
a9	0.00	0.00	0.03
a10	0.00	0.00	0.02
all	0.00	0.00	0.01
a12	0.00	0.00	
a13	0.00	0.00	

October 4, 2011

Cable Eddy Currents 1/2

Dominant effects in cable without core

- Inter-filament coupling negligible
 w.r.t. inter-strand coupling.
- Cross-over resistance *R*c defines dominant mode.

* *R*c varies by orders of magnitude.

HFDA measurements: 4 - 500 \mu\Omega.[8]

- MSUT estimates: 1.2 μΩ. Called it "Eddy-Current Machine[".]
- **HQ** calculations: 0.4 6 $\mu\Omega$.
- * Reproducibility is an issue.
- Decay and Snap-back
 - Interplay of boundary-induced coupling currents and strand magnetization.
 - **BICCS** are ISCCs on large loops, with long time constants.

Cable Eddy Currents 2/2: 11 T

* ISCCs in 11 T magnet

- Based on $Rc = 0.4 \ \mu\Omega$ we give presumably worst-case field quality for the 11-T dipole.
- "Field advance" of ~ 4% due to ISCCs clearly visible in transfer function.

***** Probably need a cored cable to increase *R*c.

* Need to measure snap-back at injection with and without cored cable.

Beam-dynamics boundary conditions see talk by B. Holzer:

- **B1** matches MB.
- || |b3| below 20 units, correctable by spool-piece correctors.
- □ |*b*2| below 16 units.
- □ |*b*5| below 5 units.
- ...
- **to be confirmed by B. Holzer for updated error tables.**

* We can deliver with

- **trim power converter,**
- part-compensation in coil geometry,
- I reduction of filament diameter,
- passive persistent-current compensation,
- adapted precycle (trim power converter),
- and cored cable.

Magnet Protection

* Design goals:

- Max. 400 K (to be discussed).
- **Redundant heater systems.**
- **Robust (enough) detection thresholds.**

* Challenge:

Large temperature margin in outer layer.

Margins to Quench

Margin to quench (%)

Margin on loadline

Enthalpy Margin Strand (mJ/cm³)

Strand enthalpy margin

Temperature margin (K)

Temperature margin

Cable enthalpy margin with resin